[AUR-432] Add layout-aware table parsing PDF reader (#27)
* add OCRReader, MathPixReader and ExcelReader * update test case for ocr reader * reformat * minor fix
This commit is contained in:
committed by
GitHub
parent
6207f4332a
commit
6c3d614973
@@ -1,3 +1,6 @@
|
||||
from .base import AutoReader
|
||||
from .excel_loader import PandasExcelReader
|
||||
from .mathpix_loader import MathpixPDFReader
|
||||
from .ocr_loader import OCRReader
|
||||
|
||||
__all__ = ["AutoReader"]
|
||||
__all__ = ["AutoReader", "PandasExcelReader", "MathpixPDFReader", "OCRReader"]
|
||||
|
96
knowledgehub/loaders/excel_loader.py
Normal file
96
knowledgehub/loaders/excel_loader.py
Normal file
@@ -0,0 +1,96 @@
|
||||
"""Pandas Excel reader.
|
||||
|
||||
Pandas parser for .xlsx files.
|
||||
|
||||
"""
|
||||
from pathlib import Path
|
||||
from typing import Any, List, Optional, Union
|
||||
|
||||
from llama_index.readers.base import BaseReader
|
||||
|
||||
from kotaemon.documents import Document
|
||||
|
||||
|
||||
class PandasExcelReader(BaseReader):
|
||||
r"""Pandas-based CSV parser.
|
||||
|
||||
Parses CSVs using the separator detection from Pandas `read_csv`function.
|
||||
If special parameters are required, use the `pandas_config` dict.
|
||||
|
||||
Args:
|
||||
|
||||
pandas_config (dict): Options for the `pandas.read_excel` function call.
|
||||
Refer to https://pandas.pydata.org/docs/reference/api/pandas.read_excel.html
|
||||
for more information. Set to empty dict by default,
|
||||
this means defaults will be used.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*args: Any,
|
||||
pandas_config: Optional[dict] = None,
|
||||
row_joiner: str = "\n",
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
"""Init params."""
|
||||
super().__init__(*args, **kwargs)
|
||||
self._pandas_config = pandas_config or {}
|
||||
self._row_joiner = row_joiner if row_joiner else "\n"
|
||||
|
||||
def load_data(
|
||||
self,
|
||||
file: Path,
|
||||
include_sheetname: bool = False,
|
||||
sheet_name: Optional[Union[str, int, list]] = None,
|
||||
**kwargs,
|
||||
) -> List[Document]:
|
||||
"""Parse file and extract values from a specific column.
|
||||
|
||||
Args:
|
||||
file (Path): The path to the Excel file to read.
|
||||
include_sheetname (bool): Whether to include the sheet name in the output.
|
||||
sheet_name (Union[str, int, None]): The specific sheet to read from,
|
||||
default is None which reads all sheets.
|
||||
|
||||
Returns:
|
||||
List[Document]: A list of`Document objects containing the
|
||||
values from the specified column in the Excel file.
|
||||
"""
|
||||
import itertools
|
||||
|
||||
try:
|
||||
import pandas as pd
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"install pandas using `pip3 install pandas` to use this loader"
|
||||
)
|
||||
|
||||
if sheet_name is not None:
|
||||
sheet_name = (
|
||||
[sheet_name] if not isinstance(sheet_name, list) else sheet_name
|
||||
)
|
||||
|
||||
dfs = pd.read_excel(file, sheet_name=sheet_name, **self._pandas_config)
|
||||
sheet_names = dfs.keys()
|
||||
df_sheets = []
|
||||
|
||||
for key in sheet_names:
|
||||
sheet = []
|
||||
if include_sheetname:
|
||||
sheet.append([key])
|
||||
sheet.extend(dfs[key].values.astype(str).tolist())
|
||||
df_sheets.append(sheet)
|
||||
|
||||
text_list = list(
|
||||
itertools.chain.from_iterable(df_sheets)
|
||||
) # flatten list of lists
|
||||
|
||||
output = [
|
||||
Document(
|
||||
text=self._row_joiner.join(" ".join(sublist) for sublist in text_list),
|
||||
metadata={"source": file.stem},
|
||||
)
|
||||
]
|
||||
|
||||
return output
|
175
knowledgehub/loaders/mathpix_loader.py
Normal file
175
knowledgehub/loaders/mathpix_loader.py
Normal file
@@ -0,0 +1,175 @@
|
||||
import json
|
||||
import re
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import requests
|
||||
from langchain.utils import get_from_dict_or_env
|
||||
from llama_index.readers.base import BaseReader
|
||||
|
||||
from kotaemon.documents import Document
|
||||
|
||||
from .utils.table import parse_markdown_text_to_tables, strip_special_chars_markdown
|
||||
|
||||
|
||||
# MathpixPDFLoader implementation taken largely from Daniel Gross's:
|
||||
# https://gist.github.com/danielgross/3ab4104e14faccc12b49200843adab21
|
||||
class MathpixPDFReader(BaseReader):
|
||||
"""Load `PDF` files using `Mathpix` service."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
processed_file_format: str = "md",
|
||||
max_wait_time_seconds: int = 500,
|
||||
should_clean_pdf: bool = True,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
"""Initialize with a file path.
|
||||
|
||||
Args:
|
||||
processed_file_format: a format of the processed file. Default is "mmd".
|
||||
max_wait_time_seconds: a maximum time to wait for the response from
|
||||
the server. Default is 500.
|
||||
should_clean_pdf: a flag to clean the PDF file. Default is False.
|
||||
**kwargs: additional keyword arguments.
|
||||
"""
|
||||
self.mathpix_api_key = get_from_dict_or_env(
|
||||
kwargs, "mathpix_api_key", "MATHPIX_API_KEY", default="empty"
|
||||
)
|
||||
self.mathpix_api_id = get_from_dict_or_env(
|
||||
kwargs, "mathpix_api_id", "MATHPIX_API_ID", default="empty"
|
||||
)
|
||||
self.processed_file_format = processed_file_format
|
||||
self.max_wait_time_seconds = max_wait_time_seconds
|
||||
self.should_clean_pdf = should_clean_pdf
|
||||
super().__init__()
|
||||
|
||||
@property
|
||||
def _mathpix_headers(self) -> Dict[str, str]:
|
||||
return {"app_id": self.mathpix_api_id, "app_key": self.mathpix_api_key}
|
||||
|
||||
@property
|
||||
def url(self) -> str:
|
||||
return "https://api.mathpix.com/v3/pdf"
|
||||
|
||||
@property
|
||||
def data(self) -> dict:
|
||||
options = {
|
||||
"conversion_formats": {self.processed_file_format: True},
|
||||
"enable_tables_fallback": True,
|
||||
}
|
||||
return {"options_json": json.dumps(options)}
|
||||
|
||||
def send_pdf(self, file_path) -> str:
|
||||
with open(file_path, "rb") as f:
|
||||
files = {"file": f}
|
||||
response = requests.post(
|
||||
self.url, headers=self._mathpix_headers, files=files, data=self.data
|
||||
)
|
||||
response_data = response.json()
|
||||
if "pdf_id" in response_data:
|
||||
pdf_id = response_data["pdf_id"]
|
||||
return pdf_id
|
||||
else:
|
||||
raise ValueError("Unable to send PDF to Mathpix.")
|
||||
|
||||
def wait_for_processing(self, pdf_id: str) -> None:
|
||||
"""Wait for processing to complete.
|
||||
|
||||
Args:
|
||||
pdf_id: a PDF id.
|
||||
|
||||
Returns: None
|
||||
"""
|
||||
url = self.url + "/" + pdf_id
|
||||
for _ in range(0, self.max_wait_time_seconds, 5):
|
||||
response = requests.get(url, headers=self._mathpix_headers)
|
||||
response_data = response.json()
|
||||
status = response_data.get("status", None)
|
||||
|
||||
if status == "completed":
|
||||
return
|
||||
elif status == "error":
|
||||
raise ValueError("Unable to retrieve PDF from Mathpix")
|
||||
else:
|
||||
print(response_data)
|
||||
print(url)
|
||||
time.sleep(5)
|
||||
raise TimeoutError
|
||||
|
||||
def get_processed_pdf(self, pdf_id: str) -> str:
|
||||
self.wait_for_processing(pdf_id)
|
||||
url = f"{self.url}/{pdf_id}.{self.processed_file_format}"
|
||||
response = requests.get(url, headers=self._mathpix_headers)
|
||||
return response.content.decode("utf-8")
|
||||
|
||||
def clean_pdf(self, contents: str) -> str:
|
||||
"""Clean the PDF file.
|
||||
|
||||
Args:
|
||||
contents: a PDF file contents.
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
contents = "\n".join(
|
||||
[line for line in contents.split("\n") if not line.startswith("![]")]
|
||||
)
|
||||
# replace \section{Title} with # Title
|
||||
contents = contents.replace("\\section{", "# ")
|
||||
# replace the "\" slash that Mathpix adds to escape $, %, (, etc.
|
||||
|
||||
# http:// or https:// followed by anything but a closing paren
|
||||
url_regex = "http[s]?://[^)]+"
|
||||
markup_regex = r"\[]\(\s*({0})\s*\)".format(url_regex)
|
||||
contents = (
|
||||
contents.replace(r"\$", "$")
|
||||
.replace(r"\%", "%")
|
||||
.replace(r"\(", "(")
|
||||
.replace(r"\)", ")")
|
||||
.replace("$\\begin{array}", "")
|
||||
.replace("\\end{array}$", "")
|
||||
.replace("\\\\", "")
|
||||
.replace("\\text", "")
|
||||
.replace("}", "")
|
||||
.replace("{", "")
|
||||
.replace("\\mathrm", "")
|
||||
)
|
||||
contents = re.sub(markup_regex, "", contents)
|
||||
return contents
|
||||
|
||||
def load_data(self, file_path: Path, **kwargs) -> List[Document]:
|
||||
if "response_content" in kwargs:
|
||||
# overriding response content if specified
|
||||
content = kwargs["response_content"]
|
||||
else:
|
||||
# call original API
|
||||
pdf_id = self.send_pdf(file_path)
|
||||
content = self.get_processed_pdf(pdf_id)
|
||||
|
||||
if self.should_clean_pdf:
|
||||
content = self.clean_pdf(content)
|
||||
tables, texts = parse_markdown_text_to_tables(content)
|
||||
documents = []
|
||||
for table in tables:
|
||||
text = strip_special_chars_markdown(table)
|
||||
metadata = {
|
||||
"source": file_path.name,
|
||||
"table_origin": table,
|
||||
"type": "table",
|
||||
}
|
||||
documents.append(
|
||||
Document(
|
||||
text=text,
|
||||
metadata=metadata,
|
||||
metadata_template="",
|
||||
metadata_seperator="",
|
||||
)
|
||||
)
|
||||
|
||||
for text in texts:
|
||||
metadata = {"source": file_path.name, "type": "text"}
|
||||
documents.append(Document(text=text, metadata=metadata))
|
||||
|
||||
return documents
|
97
knowledgehub/loaders/ocr_loader.py
Normal file
97
knowledgehub/loaders/ocr_loader.py
Normal file
@@ -0,0 +1,97 @@
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
from uuid import uuid4
|
||||
|
||||
import requests
|
||||
from llama_index.readers.base import BaseReader
|
||||
|
||||
from kotaemon.documents import Document
|
||||
|
||||
from .utils.table import (
|
||||
extract_tables_from_csv_string,
|
||||
get_table_from_ocr,
|
||||
strip_special_chars_markdown,
|
||||
)
|
||||
|
||||
DEFAULT_OCR_ENDPOINT = "http://127.0.0.1:8000/v2/ai/infer/"
|
||||
|
||||
|
||||
class OCRReader(BaseReader):
|
||||
def __init__(self, endpoint: str = DEFAULT_OCR_ENDPOINT):
|
||||
"""Init the OCR reader with OCR endpoint (FullOCR pipeline)
|
||||
|
||||
Args:
|
||||
endpoint: URL to FullOCR endpoint. Defaults to OCR_ENDPOINT.
|
||||
"""
|
||||
super().__init__()
|
||||
self.ocr_endpoint = endpoint
|
||||
|
||||
def load_data(
|
||||
self,
|
||||
file: Path,
|
||||
**kwargs,
|
||||
) -> List[Document]:
|
||||
|
||||
# create input params for the requests
|
||||
content = open(file, "rb")
|
||||
files = {"input": content}
|
||||
data = {"job_id": uuid4()}
|
||||
|
||||
# init list of output documents
|
||||
documents = []
|
||||
all_table_csv_list = []
|
||||
all_non_table_texts = []
|
||||
|
||||
# call the API from FullOCR endpoint
|
||||
if "response_content" in kwargs:
|
||||
# overriding response content if specified
|
||||
results = kwargs["response_content"]
|
||||
else:
|
||||
# call original API
|
||||
resp = requests.post(url=self.ocr_endpoint, files=files, data=data)
|
||||
results = resp.json()["result"]
|
||||
|
||||
for _id, each in enumerate(results):
|
||||
csv_content = each["csv_string"]
|
||||
table = each["json"]["table"]
|
||||
ocr = each["json"]["ocr"]
|
||||
|
||||
# using helper function to extract list of table texts from FullOCR output
|
||||
table_texts = get_table_from_ocr(ocr, table)
|
||||
# extract the formatted CSV table from specified text
|
||||
csv_list, non_table_text = extract_tables_from_csv_string(
|
||||
csv_content, table_texts
|
||||
)
|
||||
all_table_csv_list.extend([(csv, _id) for csv in csv_list])
|
||||
all_non_table_texts.append((non_table_text, _id))
|
||||
|
||||
# create output Document with metadata from table
|
||||
documents = [
|
||||
Document(
|
||||
text=strip_special_chars_markdown(csv),
|
||||
metadata={
|
||||
"table_origin": csv,
|
||||
"type": "table",
|
||||
"page_label": page_id + 1,
|
||||
"source": file.name,
|
||||
},
|
||||
metadata_template="",
|
||||
metadata_seperator="",
|
||||
)
|
||||
for csv, page_id in all_table_csv_list
|
||||
]
|
||||
# create Document from non-table text
|
||||
documents.extend(
|
||||
[
|
||||
Document(
|
||||
text=non_table_text,
|
||||
metadata={
|
||||
"page_label": page_id + 1,
|
||||
"source": file.name,
|
||||
},
|
||||
)
|
||||
for non_table_text, page_id in all_non_table_texts
|
||||
]
|
||||
)
|
||||
|
||||
return documents
|
0
knowledgehub/loaders/utils/__init__.py
Normal file
0
knowledgehub/loaders/utils/__init__.py
Normal file
335
knowledgehub/loaders/utils/table.py
Normal file
335
knowledgehub/loaders/utils/table.py
Normal file
@@ -0,0 +1,335 @@
|
||||
import csv
|
||||
from io import StringIO
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
|
||||
def check_col_conflicts(
|
||||
col_a: List[str], col_b: List[str], thres: float = 0.15
|
||||
) -> bool:
|
||||
"""Check if 2 columns A and B has non-empty content in the same row
|
||||
(to be used with merge_cols)
|
||||
|
||||
Args:
|
||||
col_a: column A (list of str)
|
||||
col_b: column B (list of str)
|
||||
thres: percentage of overlapping allowed
|
||||
Returns:
|
||||
if number of overlapping greater than threshold
|
||||
"""
|
||||
num_rows = len([cell for cell in col_a if cell])
|
||||
assert len(col_a) == len(col_b)
|
||||
conflict_count = 0
|
||||
for cell_a, cell_b in zip(col_a, col_b):
|
||||
if cell_a and cell_b:
|
||||
conflict_count += 1
|
||||
return conflict_count > num_rows * thres
|
||||
|
||||
|
||||
def merge_cols(col_a: List[str], col_b: List[str]) -> List[str]:
|
||||
"""Merge column A and B if they do not have conflict rows
|
||||
|
||||
Args:
|
||||
col_a: column A (list of str)
|
||||
col_b: column B (list of str)
|
||||
Returns:
|
||||
merged column
|
||||
"""
|
||||
for r_id in range(len(col_a)):
|
||||
if col_b[r_id]:
|
||||
col_a[r_id] = col_a[r_id] + " " + col_b[r_id]
|
||||
return col_a
|
||||
|
||||
|
||||
def add_index_col(csv_rows: List[List[str]]) -> List[List[str]]:
|
||||
"""Add index column as the first column of the table csv_rows
|
||||
|
||||
Args:
|
||||
csv_rows: input table
|
||||
Returns:
|
||||
output table with index column
|
||||
"""
|
||||
new_csv_rows = [["row id"] + [""] * len(csv_rows[0])]
|
||||
for r_id, row in enumerate(csv_rows):
|
||||
new_csv_rows.append([str(r_id + 1)] + row)
|
||||
return new_csv_rows
|
||||
|
||||
|
||||
def compress_csv(csv_rows: List[List[str]]) -> List[List[str]]:
|
||||
"""Compress table csv_rows by merging sparse columns (merge_cols)
|
||||
|
||||
Args:
|
||||
csv_rows: input table
|
||||
Returns:
|
||||
output: compressed table
|
||||
"""
|
||||
csv_cols = [[r[c_id] for r in csv_rows] for c_id in range(len(csv_rows[0]))]
|
||||
to_remove_col_ids = []
|
||||
last_c_id = 0
|
||||
for c_id in range(1, len(csv_cols)):
|
||||
if not check_col_conflicts(csv_cols[last_c_id], csv_cols[c_id]):
|
||||
to_remove_col_ids.append(c_id)
|
||||
csv_cols[last_c_id] = merge_cols(csv_cols[last_c_id], csv_cols[c_id])
|
||||
else:
|
||||
last_c_id = c_id
|
||||
|
||||
csv_cols = [r for c_id, r in enumerate(csv_cols) if c_id not in to_remove_col_ids]
|
||||
csv_rows = [[c[r_id] for c in csv_cols] for r_id in range(len(csv_cols[0]))]
|
||||
return csv_rows
|
||||
|
||||
|
||||
def _get_rect_iou(gt_box: List[tuple], pd_box: List[tuple], iou_type=0) -> int:
|
||||
"""Intersection over union on layout rectangle
|
||||
|
||||
Args:
|
||||
gt_box: List[tuple]
|
||||
A list contains bounding box coordinates of ground truth
|
||||
pd_box: List[tuple]
|
||||
A list contains bounding box coordinates of prediction
|
||||
iou_type: int
|
||||
0: intersection / union, normal IOU
|
||||
1: intersection / min(areas), useful when boxes are under/over-segmented
|
||||
|
||||
Input format: [(x1, y1), (x2, y1), (x2, y2), (x1, y2)]
|
||||
Annotation for each element in bbox:
|
||||
(x1, y1) (x2, y1)
|
||||
+-------+
|
||||
| |
|
||||
| |
|
||||
+-------+
|
||||
(x1, y2) (x2, y2)
|
||||
|
||||
Returns:
|
||||
Intersection over union value
|
||||
"""
|
||||
|
||||
assert iou_type in [0, 1], "Only support 0: origin iou, 1: intersection / min(area)"
|
||||
|
||||
# determine the (x, y)-coordinates of the intersection rectangle
|
||||
# gt_box: [(x1, y1), (x2, y1), (x2, y2), (x1, y2)]
|
||||
# pd_box: [(x1, y1), (x2, y1), (x2, y2), (x1, y2)]
|
||||
x_left = max(gt_box[0][0], pd_box[0][0])
|
||||
y_top = max(gt_box[0][1], pd_box[0][1])
|
||||
x_right = min(gt_box[2][0], pd_box[2][0])
|
||||
y_bottom = min(gt_box[2][1], pd_box[2][1])
|
||||
|
||||
# compute the area of intersection rectangle
|
||||
interArea = max(0, x_right - x_left) * max(0, y_bottom - y_top)
|
||||
|
||||
# compute the area of both the prediction and ground-truth
|
||||
# rectangles
|
||||
gt_area = (gt_box[2][0] - gt_box[0][0]) * (gt_box[2][1] - gt_box[0][1])
|
||||
pd_area = (pd_box[2][0] - pd_box[0][0]) * (pd_box[2][1] - pd_box[0][1])
|
||||
|
||||
# compute the intersection over union by taking the intersection
|
||||
# area and dividing it by the sum of prediction + ground-truth
|
||||
# areas - the interesection area
|
||||
if iou_type == 0:
|
||||
iou = interArea / float(gt_area + pd_area - interArea)
|
||||
elif iou_type == 1:
|
||||
iou = interArea / max(min(gt_area, pd_area), 1)
|
||||
|
||||
# return the intersection over union value
|
||||
return iou
|
||||
|
||||
|
||||
def get_table_from_ocr(ocr_list: List[dict], table_list: List[dict]):
|
||||
"""Get list of text lines belong to table regions specified by table_list
|
||||
|
||||
Args:
|
||||
ocr_list: list of OCR output in Casia format (Flax)
|
||||
table_list: list of table output in Casia format (Flax)
|
||||
|
||||
Returns:
|
||||
_type_: _description_
|
||||
"""
|
||||
table_texts = []
|
||||
for table in table_list:
|
||||
if table["type"] != "table":
|
||||
continue
|
||||
cur_table_texts = []
|
||||
for ocr in ocr_list:
|
||||
_iou = _get_rect_iou(table["location"], ocr["location"], iou_type=1)
|
||||
if _iou > 0.8:
|
||||
cur_table_texts.append(ocr["text"])
|
||||
table_texts.append(cur_table_texts)
|
||||
|
||||
return table_texts
|
||||
|
||||
|
||||
def make_markdown_table(array: List[List[str]]) -> str:
|
||||
"""Convert table rows in list format to markdown string
|
||||
|
||||
Args:
|
||||
Python list with rows of table as lists
|
||||
First element as header.
|
||||
Example Input:
|
||||
[["Name", "Age", "Height"],
|
||||
["Jake", 20, 5'10],
|
||||
["Mary", 21, 5'7]]
|
||||
Returns:
|
||||
String to put into a .md file
|
||||
"""
|
||||
array = compress_csv(array)
|
||||
array = add_index_col(array)
|
||||
markdown = "\n" + str("| ")
|
||||
|
||||
for e in array[0]:
|
||||
to_add = " " + str(e) + str(" |")
|
||||
markdown += to_add
|
||||
markdown += "\n"
|
||||
|
||||
markdown += "| "
|
||||
for i in range(len(array[0])):
|
||||
markdown += str("--- | ")
|
||||
markdown += "\n"
|
||||
|
||||
for entry in array[1:]:
|
||||
markdown += str("| ")
|
||||
for e in entry:
|
||||
to_add = str(e) + str(" | ")
|
||||
markdown += to_add
|
||||
markdown += "\n"
|
||||
|
||||
return markdown + "\n"
|
||||
|
||||
|
||||
def parse_csv_string_to_list(csv_str: str) -> List[List[str]]:
|
||||
"""Convert CSV string to list of rows
|
||||
|
||||
Args:
|
||||
csv_str: input CSV string
|
||||
|
||||
Returns:
|
||||
Output table in list format
|
||||
"""
|
||||
io = StringIO(csv_str)
|
||||
csv_reader = csv.reader(io, delimiter=",")
|
||||
rows = [row for row in csv_reader]
|
||||
return rows
|
||||
|
||||
|
||||
def format_cell(cell: str, length_limit: Optional[int] = None) -> str:
|
||||
"""Format cell content by remove redundant character and enforce length limit
|
||||
|
||||
Args:
|
||||
cell: input cell text
|
||||
length_limit: limit of text length.
|
||||
|
||||
Returns:
|
||||
new cell text
|
||||
"""
|
||||
cell = cell.replace("\n", " ")
|
||||
if length_limit:
|
||||
cell = cell[:length_limit]
|
||||
return cell
|
||||
|
||||
|
||||
def extract_tables_from_csv_string(
|
||||
csv_content: str, table_texts: List[List[str]]
|
||||
) -> Tuple[List[str], str]:
|
||||
"""Extract list of table from FullOCR output
|
||||
(csv_content) with the specified table_texts
|
||||
|
||||
Args:
|
||||
csv_content: CSV output from FullOCR pipeline
|
||||
table_texts: list of table texts extracted
|
||||
from get_table_from_ocr()
|
||||
|
||||
Returns:
|
||||
List of tables and non-text content
|
||||
"""
|
||||
rows = parse_csv_string_to_list(csv_content)
|
||||
used_row_ids = []
|
||||
table_csv_list = []
|
||||
for table in table_texts:
|
||||
cur_rows = []
|
||||
for row_id, row in enumerate(rows):
|
||||
scores = [
|
||||
any(cell in cell_reference for cell in table)
|
||||
for cell_reference in row
|
||||
if cell_reference
|
||||
]
|
||||
score = sum(scores) / len(scores)
|
||||
if score > 0.5 and row_id not in used_row_ids:
|
||||
used_row_ids.append(row_id)
|
||||
cur_rows.append([format_cell(cell) for cell in row])
|
||||
if cur_rows:
|
||||
table_csv_list.append(make_markdown_table(cur_rows))
|
||||
else:
|
||||
print("table not matched", table)
|
||||
|
||||
non_table_rows = [
|
||||
row for row_id, row in enumerate(rows) if row_id not in used_row_ids
|
||||
]
|
||||
non_table_text = "\n".join(
|
||||
" ".join(format_cell(cell) for cell in row) for row in non_table_rows
|
||||
)
|
||||
return table_csv_list, non_table_text
|
||||
|
||||
|
||||
def strip_special_chars_markdown(text: str) -> str:
|
||||
"""Strip special characters from input text in markdown table format"""
|
||||
return text.replace("|", "").replace(":---:", "").replace("---", "")
|
||||
|
||||
|
||||
def markdown_to_list(markdown_text: str, pad_to_max_col: Optional[bool] = True):
|
||||
rows = []
|
||||
lines = markdown_text.split("\n")
|
||||
markdown_lines = [line.strip() for line in lines if " | " in line]
|
||||
|
||||
for row in markdown_lines:
|
||||
tmp = row
|
||||
# Get rid of leading and trailing '|'
|
||||
if tmp.startswith("|"):
|
||||
tmp = tmp[1:]
|
||||
if tmp.endswith("|"):
|
||||
tmp = tmp[:-1]
|
||||
|
||||
# Split line and ignore column whitespace
|
||||
clean_line = tmp.split("|")
|
||||
if not all(c == "" for c in clean_line):
|
||||
# Append clean row data to rows variable
|
||||
rows.append(clean_line)
|
||||
|
||||
# Get rid of syntactical sugar to indicate header (2nd row)
|
||||
rows = [row for row in rows if "---" not in " ".join(row)]
|
||||
max_cols = max(len(row) for row in rows)
|
||||
if pad_to_max_col:
|
||||
rows = [row + [""] * (max_cols - len(row)) for row in rows]
|
||||
return rows
|
||||
|
||||
|
||||
def parse_markdown_text_to_tables(text: str) -> Tuple[List[str], List[str]]:
|
||||
"""Convert markdown text to list of non-table spans and table spans
|
||||
|
||||
Args:
|
||||
text: input markdown text
|
||||
|
||||
Returns:
|
||||
list of table spans and non-table spans
|
||||
"""
|
||||
# init empty tables and texts list
|
||||
tables = []
|
||||
texts = []
|
||||
|
||||
# split input by line break
|
||||
lines = text.split("\n")
|
||||
cur_table = []
|
||||
cur_text: List[str] = []
|
||||
for line in lines:
|
||||
line = line.strip()
|
||||
if line.startswith("|"):
|
||||
if len(cur_text) > 0:
|
||||
texts.append(cur_text)
|
||||
cur_text = []
|
||||
cur_table.append(line)
|
||||
else:
|
||||
# add new table to the list
|
||||
if len(cur_table) > 0:
|
||||
tables.append(cur_table)
|
||||
cur_table = []
|
||||
cur_text.append(line)
|
||||
|
||||
table_texts = ["\n".join(table) for table in tables]
|
||||
non_table_texts = ["\n".join(text) for text in texts]
|
||||
return table_texts, non_table_texts
|
Reference in New Issue
Block a user