* add OCRReader, MathPixReader and ExcelReader * update test case for ocr reader * reformat * minor fix
98 lines
3.0 KiB
Python
98 lines
3.0 KiB
Python
from pathlib import Path
|
|
from typing import List
|
|
from uuid import uuid4
|
|
|
|
import requests
|
|
from llama_index.readers.base import BaseReader
|
|
|
|
from kotaemon.documents import Document
|
|
|
|
from .utils.table import (
|
|
extract_tables_from_csv_string,
|
|
get_table_from_ocr,
|
|
strip_special_chars_markdown,
|
|
)
|
|
|
|
DEFAULT_OCR_ENDPOINT = "http://127.0.0.1:8000/v2/ai/infer/"
|
|
|
|
|
|
class OCRReader(BaseReader):
|
|
def __init__(self, endpoint: str = DEFAULT_OCR_ENDPOINT):
|
|
"""Init the OCR reader with OCR endpoint (FullOCR pipeline)
|
|
|
|
Args:
|
|
endpoint: URL to FullOCR endpoint. Defaults to OCR_ENDPOINT.
|
|
"""
|
|
super().__init__()
|
|
self.ocr_endpoint = endpoint
|
|
|
|
def load_data(
|
|
self,
|
|
file: Path,
|
|
**kwargs,
|
|
) -> List[Document]:
|
|
|
|
# create input params for the requests
|
|
content = open(file, "rb")
|
|
files = {"input": content}
|
|
data = {"job_id": uuid4()}
|
|
|
|
# init list of output documents
|
|
documents = []
|
|
all_table_csv_list = []
|
|
all_non_table_texts = []
|
|
|
|
# call the API from FullOCR endpoint
|
|
if "response_content" in kwargs:
|
|
# overriding response content if specified
|
|
results = kwargs["response_content"]
|
|
else:
|
|
# call original API
|
|
resp = requests.post(url=self.ocr_endpoint, files=files, data=data)
|
|
results = resp.json()["result"]
|
|
|
|
for _id, each in enumerate(results):
|
|
csv_content = each["csv_string"]
|
|
table = each["json"]["table"]
|
|
ocr = each["json"]["ocr"]
|
|
|
|
# using helper function to extract list of table texts from FullOCR output
|
|
table_texts = get_table_from_ocr(ocr, table)
|
|
# extract the formatted CSV table from specified text
|
|
csv_list, non_table_text = extract_tables_from_csv_string(
|
|
csv_content, table_texts
|
|
)
|
|
all_table_csv_list.extend([(csv, _id) for csv in csv_list])
|
|
all_non_table_texts.append((non_table_text, _id))
|
|
|
|
# create output Document with metadata from table
|
|
documents = [
|
|
Document(
|
|
text=strip_special_chars_markdown(csv),
|
|
metadata={
|
|
"table_origin": csv,
|
|
"type": "table",
|
|
"page_label": page_id + 1,
|
|
"source": file.name,
|
|
},
|
|
metadata_template="",
|
|
metadata_seperator="",
|
|
)
|
|
for csv, page_id in all_table_csv_list
|
|
]
|
|
# create Document from non-table text
|
|
documents.extend(
|
|
[
|
|
Document(
|
|
text=non_table_text,
|
|
metadata={
|
|
"page_label": page_id + 1,
|
|
"source": file.name,
|
|
},
|
|
)
|
|
for non_table_text, page_id in all_non_table_texts
|
|
]
|
|
)
|
|
|
|
return documents
|