kotaemon/setup.py
Nguyen Trung Duc (john) c3c25db48c [AUR-385, AUR-388] Declare BaseComponent and decide LLM call interface (#2)
- Use cases related to LLM call: https://cinnamon-ai.atlassian.net/browse/AUR-388?focusedCommentId=34873
- Sample usages: `test_llms_chat_models.py` and `test_llms_completion_models.py`:

```python
from kotaemon.llms.chats.openai import AzureChatOpenAI

model = AzureChatOpenAI(
    openai_api_base="https://test.openai.azure.com/",
    openai_api_key="some-key",
    openai_api_version="2023-03-15-preview",
    deployment_name="gpt35turbo",
    temperature=0,
    request_timeout=60,
)
output = model("hello world")
```

For the LLM-call component, I decide to wrap around Langchain's LLM models and Langchain's Chat models. And set the interface as follow:

- Completion LLM component:
```python
class CompletionLLM:

    def run_raw(self, text: str) -> LLMInterface:
        # Run text completion: str in -> LLMInterface out

    def run_batch_raw(self, text: list[str]) -> list[LLMInterface]:
        # Run text completion in batch: list[str] in -> list[LLMInterface] out

# run_document and run_batch_document just reuse run_raw and run_batch_raw, due to unclear use case
```

- Chat LLM component:
```python
class ChatLLM:
    def run_raw(self, text: str) -> LLMInterface:
        # Run chat completion (no chat history): str in -> LLMInterface out

    def run_batch_raw(self, text: list[str]) -> list[LLMInterface]:
        # Run chat completion in batch mode (no chat history): list[str] in -> list[LLMInterface] out

    def run_document(self, text: list[BaseMessage]) -> LLMInterface:
        # Run chat completion (with chat history): list[langchain's BaseMessage] in -> LLMInterface out

    def run_batch_document(self, text: list[list[BaseMessage]]) -> list[LLMInterface]:
        # Run chat completion in batch mode (with chat history): list[list[langchain's BaseMessage]] in -> list[LLMInterface] out
```

- The LLMInterface is as follow:

```python
@dataclass
class LLMInterface:
    text: list[str]
    completion_tokens: int = -1
    total_tokens: int = -1
    prompt_tokens: int = -1
    logits: list[list[float]] = field(default_factory=list)
```
2023-08-29 15:47:12 +07:00

58 lines
1.5 KiB
Python

import codecs
import re
from pathlib import Path
import setuptools
def read(file_path: str) -> str:
return codecs.open(file_path, "r").read()
def get_version() -> str:
version_file = read(str(Path("kotaemon", "__init__.py")))
match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", version_file, re.M)
if match:
return match.group(1)
raise RuntimeError("Cannot find verison string")
setuptools.setup(
name="kotaemon",
version=get_version(),
author="john",
author_email="john@cinnamon.com",
description="Kotaemon core library for AI development",
long_description=read("README.md"),
long_description_content_type="text/markdown",
url="https://github.com/Cinnamon/kotaemon/",
packages=setuptools.find_packages(exclude=("tests", "tests.*")),
install_requires=[
"farm-haystack==1.19.0",
"langchain",
"theflow",
],
extras_require={
"dev": [
"ipython",
"pytest",
"pre-commit",
"black",
"flake8",
"sphinx",
"coverage",
# optional dependency needed for test
"openai"
],
},
entry_points={"console_scripts": ["kh=kotaemon.cli:main"]},
python_requires=">=3",
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
],
include_package_data=True,
)