* Support hybrid vector retrieval * Enable figures and table reading in Azure DI * Retrieve with multi-modal * Fix mixing up table * Add txt loader * Add Anthropic Chat * Raising error when retrieving help file * Allow same filename for different people if private is True * Allow declaring extra LLM vendors * Show chunks on the File page * Allow elasticsearch to get more docs * Fix Cohere response (#86) * Fix Cohere response * Remove Adobe pdfservice from dependency kotaemon doesn't rely more pdfservice for its core functionality, and pdfservice uses very out-dated dependency that causes conflict. --------- Co-authored-by: trducng <trungduc1992@gmail.com> * Add confidence score (#87) * Save question answering data as a log file * Save the original information besides the rewritten info * Export Cohere relevance score as confidence score * Fix style check * Upgrade the confidence score appearance (#90) * Highlight the relevance score * Round relevance score. Get key from config instead of env * Cohere return all scores * Display relevance score for image * Remove columns and rows in Excel loader which contains all NaN (#91) * remove columns and rows which contains all NaN * back to multiple joiner options * Fix style --------- Co-authored-by: linhnguyen-cinnamon <cinmc0019@CINMC0019-LinhNguyen.local> Co-authored-by: trducng <trungduc1992@gmail.com> * Track retriever state * Bump llama-index version 0.10 * feat/save-azuredi-mhtml-to-markdown (#93) * feat/save-azuredi-mhtml-to-markdown * fix: replace os.path to pathlib change theflow.settings * refactor: base on pre-commit * chore: move the func of saving content markdown above removed_spans --------- Co-authored-by: jacky0218 <jacky0218@github.com> * fix: losing first chunk (#94) * fix: losing first chunk. * fix: update the method of preventing losing chunks --------- Co-authored-by: jacky0218 <jacky0218@github.com> * fix: adding the base64 image in markdown (#95) * feat: more chunk info on UI * fix: error when reindexing files * refactor: allow more information exception trace when using gpt4v * feat: add excel reader that treats each worksheet as a document * Persist loader information when indexing file * feat: allow hiding unneeded setting panels * feat: allow specific timezone when creating conversation * feat: add more confidence score (#96) * Allow a list of rerankers * Export llm reranking score instead of filter with boolean * Get logprobs from LLMs * Rename cohere reranking score * Call 2 rerankers at once * Run QA pipeline for each chunk to get qa_score * Display more relevance scores * Define another LLMScoring instead of editing the original one * Export logprobs instead of probs * Call LLMScoring * Get qa_score only in the final answer * feat: replace text length with token in file list * ui: show index name instead of id in the settings * feat(ai): restrict the vision temperature * fix(ui): remove the misleading message about non-retrieved evidences * feat(ui): show the reasoning name and description in the reasoning setting page * feat(ui): show version on the main windows * feat(ui): show default llm name in the setting page * fix(conf): append the result of doc in llm_scoring (#97) * fix: constraint maximum number of images * feat(ui): allow filter file by name in file list page * Fix exceeding token length error for OpenAI embeddings by chunking then averaging (#99) * Average embeddings in case the text exceeds max size * Add docstring * fix: Allow empty string when calling embedding * fix: update trulens LLM ranking score for retrieval confidence, improve citation (#98) * Round when displaying not by default * Add LLMTrulens reranking model * Use llmtrulensscoring in pipeline * fix: update UI display for trulen score --------- Co-authored-by: taprosoft <tadashi@cinnamon.is> * feat: add question decomposition & few-shot rewrite pipeline (#89) * Create few-shot query-rewriting. Run and display the result in info_panel * Fix style check * Put the functions to separate modules * Add zero-shot question decomposition * Fix fewshot rewriting * Add default few-shot examples * Fix decompose question * Fix importing rewriting pipelines * fix: update decompose logic in fullQA pipeline --------- Co-authored-by: taprosoft <tadashi@cinnamon.is> * fix: add encoding utf-8 when save temporal markdown in vectorIndex (#101) * fix: improve retrieval pipeline and relevant score display (#102) * fix: improve retrieval pipeline by extending first round top_k with multiplier * fix: minor fix * feat: improve UI default settings and add quick switch option for pipeline * fix: improve agent logics (#103) * fix: improve agent progres display * fix: update retrieval logic * fix: UI display * fix: less verbose debug log * feat: add warning message for low confidence * fix: LLM scoring enabled by default * fix: minor update logics * fix: hotfix image citation * feat: update docx loader for handle merged table cells + handle zip file upload (#104) * feat: update docx loader for handle merged table cells * feat: handle zip file * refactor: pre-commit * fix: escape text in download UI * feat: optimize vector store query db (#105) * feat: optimize vector store query db * feat: add file_id to chroma metadatas * feat: remove unnecessary logs and update migrate script * feat: iterate through file index * fix: remove unused code --------- Co-authored-by: taprosoft <tadashi@cinnamon.is> * fix: add openai embedidng exponential back-off * fix: update import download_loader * refactor: codespell * fix: update some default settings * fix: update installation instruction * fix: default chunk length in simple QA * feat: add share converstation feature and enable retrieval history (#108) * feat: add share converstation feature and enable retrieval history * fix: update share conversation UI --------- Co-authored-by: taprosoft <tadashi@cinnamon.is> * fix: allow exponential backoff for failed OCR call (#109) * fix: update default prompt when no retrieval is used * fix: create embedding for long image chunks * fix: add exception handling for additional table retriever * fix: clean conversation & file selection UI * fix: elastic search with empty doc_ids * feat: add thumbnail PDF reader for quick multimodal QA * feat: add thumbnail handling logic in indexing * fix: UI text update * fix: PDF thumb loader page number logic * feat: add quick indexing pipeline and update UI * feat: add conv name suggestion * fix: minor UI change * feat: citation in thread * fix: add conv name suggestion in regen * chore: add assets for usage doc * chore: update usage doc * feat: pdf viewer (#110) * feat: update pdfviewer * feat: update missing files * fix: update rendering logic of infor panel * fix: improve thumbnail retrieval logic * fix: update PDF evidence rendering logic * fix: remove pdfjs built dist * fix: reduce thumbnail evidence count * chore: update gitignore * fix: add js event on chat msg select * fix: update css for viewer * fix: add env var for PDFJS prebuilt * fix: move language setting to reasoning utils --------- Co-authored-by: phv2312 <kat87yb@gmail.com> Co-authored-by: trducng <trungduc1992@gmail.com> * feat: graph rag (#116) * fix: reload server when add/delete index * fix: rework indexing pipeline to be able to disable vectorstore and splitter if needed * feat: add graphRAG index with plot view * fix: update requirement for graphRAG and lighten unnecessary packages * feat: add knowledge network index (#118) * feat: add Knowledge Network index * fix: update reader mode setting for knet * fix: update init knet * fix: update collection name to index pipeline * fix: missing req --------- Co-authored-by: jeff52415 <jeff.yang@cinnamon.is> * fix: update info panel return for graphrag * fix: retriever setting graphrag * feat: local llm settings (#122) * feat: expose context length as reasoning setting to better fit local models * fix: update context length setting for agents * fix: rework threadpool llm call * fix: fix improve indexing logic * fix: fix improve UI * feat: add lancedb * fix: improve lancedb logic * feat: add lancedb vectorstore * fix: lighten requirement * fix: improve lanceDB vs * fix: improve UI * fix: openai retry * fix: update reqs * fix: update launch command * feat: update Dockerfile * feat: add plot history * fix: update default config * fix: remove verbose print * fix: update default setting * fix: update gradio plot return * fix: default gradio tmp * fix: improve lancedb docstore * fix: fix question decompose pipeline * feat: add multimodal reader in UI * fix: udpate docs * fix: update default settings & docker build * fix: update app startup * chore: update documentation * chore: update README * chore: update README --------- Co-authored-by: trducng <trungduc1992@gmail.com> * chore: update README * chore: update README --------- Co-authored-by: trducng <trungduc1992@gmail.com> Co-authored-by: cin-ace <ace@cinnamon.is> Co-authored-by: Linh Nguyen <70562198+linhnguyen-cinnamon@users.noreply.github.com> Co-authored-by: linhnguyen-cinnamon <cinmc0019@CINMC0019-LinhNguyen.local> Co-authored-by: cin-jacky <101088014+jacky0218@users.noreply.github.com> Co-authored-by: jacky0218 <jacky0218@github.com> Co-authored-by: kan_cin <kan@cinnamon.is> Co-authored-by: phv2312 <kat87yb@gmail.com> Co-authored-by: jeff52415 <jeff.yang@cinnamon.is>
101 lines
3.6 KiB
Python
101 lines
3.6 KiB
Python
import json
|
|
import uuid
|
|
from pathlib import Path
|
|
|
|
from ktem.components import get_docstore, get_vectorstore
|
|
from ktem.llms.manager import llms
|
|
from ktem.reasoning.prompt_optimization.rewrite_question import (
|
|
DEFAULT_REWRITE_PROMPT,
|
|
RewriteQuestionPipeline,
|
|
)
|
|
from theflow.settings import settings as flowsettings
|
|
|
|
from kotaemon.base import AIMessage, Document, HumanMessage, Node, SystemMessage
|
|
from kotaemon.embeddings import BaseEmbeddings
|
|
from kotaemon.llms import ChatLLM
|
|
from kotaemon.storages import BaseDocumentStore, BaseVectorStore
|
|
|
|
|
|
class FewshotRewriteQuestionPipeline(RewriteQuestionPipeline):
|
|
"""Rewrite user question
|
|
|
|
Args:
|
|
llm: the language model to rewrite question
|
|
rewrite_template: the prompt template for llm to paraphrase a text input
|
|
lang: the language of the answer. Currently support English and Japanese
|
|
embedding: the embedding model to encode the question
|
|
vector_store: the vector store to store the encoded question
|
|
doc_store: the document store to store the original question
|
|
k: the number of examples to retrieve for rewriting
|
|
"""
|
|
|
|
llm: ChatLLM = Node(default_callback=lambda _: llms.get_default())
|
|
rewrite_template: str = DEFAULT_REWRITE_PROMPT
|
|
lang: str = "English"
|
|
embedding: BaseEmbeddings
|
|
vector_store: BaseVectorStore
|
|
doc_store: BaseDocumentStore
|
|
k: int = getattr(flowsettings, "N_PROMPT_OPT_EXAMPLES", 3)
|
|
|
|
def add_documents(self, examples, batch_size: int = 50):
|
|
print("Adding fewshot examples for rewriting")
|
|
documents = []
|
|
for example in examples:
|
|
doc = Document(
|
|
text=example["input"], id_=str(uuid.uuid4()), metadata=example
|
|
)
|
|
documents.append(doc)
|
|
|
|
for i in range(0, len(documents), batch_size):
|
|
embeddings = self.embedding(documents[i : i + batch_size])
|
|
ids = [t.doc_id for t in documents[i : i + batch_size]]
|
|
self.vector_store.add(
|
|
embeddings=embeddings,
|
|
ids=ids,
|
|
)
|
|
self.doc_store.add(documents[i : i + batch_size])
|
|
|
|
@classmethod
|
|
def get_pipeline(
|
|
cls,
|
|
embedding,
|
|
example_path=Path(__file__).parent / "rephrase_question_train.json",
|
|
collection_name: str = "fewshot_rewrite_examples",
|
|
):
|
|
vector_store = get_vectorstore(collection_name)
|
|
doc_store = get_docstore(collection_name)
|
|
|
|
pipeline = cls(
|
|
embedding=embedding, vector_store=vector_store, doc_store=doc_store
|
|
)
|
|
if doc_store.count():
|
|
return pipeline
|
|
|
|
examples = json.load(open(example_path, "r"))
|
|
pipeline.add_documents(examples)
|
|
|
|
return pipeline
|
|
|
|
def run(self, question: str) -> Document: # type: ignore
|
|
emb = self.embedding(question)[0].embedding
|
|
_, _, ids = self.vector_store.query(embedding=emb, top_k=self.k)
|
|
examples = self.doc_store.get(ids)
|
|
messages = [SystemMessage(content="You are a helpful assistant")]
|
|
for example in examples:
|
|
messages.append(
|
|
HumanMessage(
|
|
content=self.rewrite_template.format(
|
|
question=example.metadata["input"], lang=self.lang
|
|
)
|
|
)
|
|
)
|
|
messages.append(AIMessage(content=example.metadata["output"]))
|
|
messages.append(
|
|
HumanMessage(
|
|
content=self.rewrite_template.format(question=question, lang=self.lang)
|
|
)
|
|
)
|
|
|
|
result = self.llm(messages)
|
|
return result
|