* enforce Document as IO * Separate rerankers, splitters and extractors (#85) * partially refractor importing * add text to embedding outputs --------- Co-authored-by: Nguyen Trung Duc (john) <trungduc1992@gmail.com>
96 lines
3.2 KiB
Python
96 lines
3.2 KiB
Python
import json
|
|
from pathlib import Path
|
|
from unittest.mock import patch
|
|
|
|
from kotaemon.base import Document
|
|
from kotaemon.embeddings.cohere import CohereEmbdeddings
|
|
from kotaemon.embeddings.huggingface import HuggingFaceEmbeddings
|
|
from kotaemon.embeddings.openai import AzureOpenAIEmbeddings
|
|
|
|
with open(Path(__file__).parent / "resources" / "embedding_openai_batch.json") as f:
|
|
openai_embedding_batch = json.load(f)
|
|
|
|
with open(Path(__file__).parent / "resources" / "embedding_openai.json") as f:
|
|
openai_embedding = json.load(f)
|
|
|
|
|
|
@patch(
|
|
"openai.resources.embeddings.Embeddings.create",
|
|
side_effect=lambda *args, **kwargs: openai_embedding,
|
|
)
|
|
def test_azureopenai_embeddings_raw(openai_embedding_call):
|
|
model = AzureOpenAIEmbeddings(
|
|
model="text-embedding-ada-002",
|
|
deployment="embedding-deployment",
|
|
azure_endpoint="https://test.openai.azure.com/",
|
|
openai_api_key="some-key",
|
|
)
|
|
output = model("Hello world")
|
|
assert isinstance(output, list)
|
|
assert isinstance(output[0], Document)
|
|
assert isinstance(output[0].embedding, list)
|
|
assert isinstance(output[0].embedding[0], float)
|
|
openai_embedding_call.assert_called()
|
|
|
|
|
|
@patch(
|
|
"openai.resources.embeddings.Embeddings.create",
|
|
side_effect=lambda *args, **kwargs: openai_embedding_batch,
|
|
)
|
|
def test_azureopenai_embeddings_batch_raw(openai_embedding_call):
|
|
model = AzureOpenAIEmbeddings(
|
|
model="text-embedding-ada-002",
|
|
deployment="embedding-deployment",
|
|
azure_endpoint="https://test.openai.azure.com/",
|
|
openai_api_key="some-key",
|
|
)
|
|
output = model(["Hello world", "Goodbye world"])
|
|
assert isinstance(output, list)
|
|
assert isinstance(output[0], Document)
|
|
assert isinstance(output[0].embedding, list)
|
|
assert isinstance(output[0].embedding[0], float)
|
|
openai_embedding_call.assert_called()
|
|
|
|
|
|
@patch(
|
|
"sentence_transformers.SentenceTransformer",
|
|
side_effect=lambda *args, **kwargs: None,
|
|
)
|
|
@patch(
|
|
"langchain.embeddings.huggingface.HuggingFaceBgeEmbeddings.embed_documents",
|
|
side_effect=lambda *args, **kwargs: [[1.0, 2.1, 3.2]],
|
|
)
|
|
def test_huggingface_embddings(
|
|
langchain_huggingface_embedding_call, sentence_transformers_init
|
|
):
|
|
model = HuggingFaceEmbeddings(
|
|
model_name="intfloat/multilingual-e5-large",
|
|
model_kwargs={"device": "cpu"},
|
|
encode_kwargs={"normalize_embeddings": False},
|
|
)
|
|
|
|
output = model("Hello World")
|
|
assert isinstance(output, list)
|
|
assert isinstance(output[0], Document)
|
|
assert isinstance(output[0].embedding, list)
|
|
assert isinstance(output[0].embedding[0], float)
|
|
sentence_transformers_init.assert_called()
|
|
langchain_huggingface_embedding_call.assert_called()
|
|
|
|
|
|
@patch(
|
|
"langchain.embeddings.cohere.CohereEmbeddings.embed_documents",
|
|
side_effect=lambda *args, **kwargs: [[1.0, 2.1, 3.2]],
|
|
)
|
|
def test_cohere_embeddings(langchain_cohere_embedding_call):
|
|
model = CohereEmbdeddings(
|
|
model="embed-english-light-v2.0", cohere_api_key="my-api-key"
|
|
)
|
|
|
|
output = model("Hello World")
|
|
assert isinstance(output, list)
|
|
assert isinstance(output[0], Document)
|
|
assert isinstance(output[0].embedding, list)
|
|
assert isinstance(output[0].embedding[0], float)
|
|
langchain_cohere_embedding_call.assert_called()
|