kotaemon/knowledgehub/embeddings/base.py
ian_Cin 8e0779a22d Enforce all IO objects to be subclassed from Document (#88)
* enforce Document as IO

* Separate rerankers, splitters and extractors (#85)

* partially refractor importing

* add text to embedding outputs

---------

Co-authored-by: Nguyen Trung Duc (john) <trungduc1992@gmail.com>
2023-11-27 16:35:09 +07:00

67 lines
1.9 KiB
Python

from __future__ import annotations
from abc import abstractmethod
from typing import Type
from langchain.schema.embeddings import Embeddings as LCEmbeddings
from theflow import Param
from kotaemon.base import BaseComponent, Document, DocumentWithEmbedding
class BaseEmbeddings(BaseComponent):
@abstractmethod
def run(
self, text: str | list[str] | Document | list[Document]
) -> list[DocumentWithEmbedding]:
...
class LangchainEmbeddings(BaseEmbeddings):
_lc_class: Type[LCEmbeddings]
def __init__(self, **params):
if self._lc_class is None:
raise AttributeError(
"Should set _lc_class attribute to the LLM class from Langchain "
"if using LLM from Langchain"
)
self._kwargs: dict = {}
for param in list(params.keys()):
if param in self._lc_class.__fields__: # type: ignore
self._kwargs[param] = params.pop(param)
super().__init__(**params)
def __setattr__(self, name, value):
if name in self._lc_class.__fields__:
self._kwargs[name] = value
else:
super().__setattr__(name, value)
@Param.auto(cache=False)
def agent(self):
return self._lc_class(**self._kwargs)
def run(self, text):
input_: list[str] = []
if not isinstance(text, list):
text = [text]
for item in text:
if isinstance(item, str):
input_.append(item)
elif isinstance(item, Document):
input_.append(item.text)
else:
raise ValueError(
f"Invalid input type {type(item)}, should be str or Document"
)
embeddings = self.agent.embed_documents(input_)
return [
DocumentWithEmbedding(text=each_text, embedding=each_embedding)
for each_text, each_embedding in zip(input_, embeddings)
]