kotaemon/knowledgehub/llms/completions/base.py
2023-11-14 11:51:10 +07:00

71 lines
2.1 KiB
Python

import logging
from typing import Type
from langchain.llms.base import BaseLLM
from theflow.base import Param
from ...base import BaseComponent
from ...base.schema import LLMInterface
logger = logging.getLogger(__name__)
class LLM(BaseComponent):
pass
class LangchainLLM(LLM):
_lc_class: Type[BaseLLM]
def __init__(self, **params):
if self._lc_class is None:
raise AttributeError(
"Should set _lc_class attribute to the LLM class from Langchain "
"if using LLM from Langchain"
)
self._kwargs: dict = {}
for param in list(params.keys()):
if param in self._lc_class.__fields__:
self._kwargs[param] = params.pop(param)
super().__init__(**params)
@Param.auto(cache=False)
def agent(self):
return self._lc_class(**self._kwargs)
def run(self, text: str) -> LLMInterface:
pred = self.agent.generate([text])
all_text = [each.text for each in pred.generations[0]]
completion_tokens, total_tokens, prompt_tokens = 0, 0, 0
try:
if pred.llm_output is not None:
completion_tokens = pred.llm_output["token_usage"]["completion_tokens"]
total_tokens = pred.llm_output["token_usage"]["total_tokens"]
prompt_tokens = pred.llm_output["token_usage"]["prompt_tokens"]
except Exception:
logger.warning(
f"Cannot get token usage from LLM output for {self._lc_class.__name__}"
)
return LLMInterface(
text=all_text[0] if len(all_text) > 0 else "",
candidates=all_text,
completion_tokens=completion_tokens,
total_tokens=total_tokens,
prompt_tokens=prompt_tokens,
logits=[],
)
def __setattr__(self, name, value):
if name in self._lc_class.__fields__:
self._kwargs[name] = value
setattr(self.agent, name, value)
else:
super().__setattr__(name, value)
class LLMChat(BaseComponent):
pass