kotaemon/knowledgehub/embeddings/base.py
Nguyen Trung Duc (john) 620b2b03ca [AUR-392, AUR-413, AUR-414] Define base vector store, and make use of ChromaVectorStore from llama_index. Indexing and retrieving vectors with vector store (#18)
Design the base interface of vector store, and apply it to the Chroma Vector Store (wrapped around llama_index's implementation). Provide the pipelines to populate and retrieve from vector store.
2023-09-14 14:18:20 +07:00

78 lines
2.3 KiB
Python

from abc import abstractmethod
from typing import List, Type
from langchain.embeddings.base import Embeddings as LCEmbeddings
from theflow import Param
from ..components import BaseComponent
from ..documents.base import Document
class BaseEmbeddings(BaseComponent):
@abstractmethod
def run_raw(self, text: str) -> List[float]:
...
@abstractmethod
def run_batch_raw(self, text: List[str]) -> List[List[float]]:
...
@abstractmethod
def run_document(self, text: Document) -> List[float]:
...
@abstractmethod
def run_batch_document(self, text: List[Document]) -> List[List[float]]:
...
def is_document(self, text) -> bool:
if isinstance(text, Document):
return True
elif isinstance(text, List) and isinstance(text[0], Document):
return True
return False
def is_batch(self, text) -> bool:
if isinstance(text, list):
return True
return False
class LangchainEmbeddings(BaseEmbeddings):
_lc_class: Type[LCEmbeddings]
def __init__(self, **params):
if self._lc_class is None:
raise AttributeError(
"Should set _lc_class attribute to the LLM class from Langchain "
"if using LLM from Langchain"
)
self._kwargs: dict = {}
for param in list(params.keys()):
if param in self._lc_class.__fields__: # type: ignore
self._kwargs[param] = params.pop(param)
super().__init__(**params)
def __setattr__(self, name, value):
if name in self._lc_class.__fields__:
setattr(self.agent, name, value)
else:
super().__setattr__(name, value)
@Param.decorate(no_cache=True)
def agent(self):
return self._lc_class(**self._kwargs)
def run_raw(self, text: str) -> List[float]:
return self.agent.embed_query(text) # type: ignore
def run_batch_raw(self, text: List[str]) -> List[List[float]]:
return self.agent.embed_documents(text) # type: ignore
def run_document(self, text: Document) -> List[float]:
return self.agent.embed_query(text.text) # type: ignore
def run_batch_document(self, text: List[Document]) -> List[List[float]]:
return self.agent.embed_documents([each.text for each in text]) # type: ignore