Design the base interface of vector store, and apply it to the Chroma Vector Store (wrapped around llama_index's implementation). Provide the pipelines to populate and retrieve from vector store.
78 lines
2.3 KiB
Python
78 lines
2.3 KiB
Python
from abc import abstractmethod
|
|
from typing import List, Type
|
|
|
|
from langchain.embeddings.base import Embeddings as LCEmbeddings
|
|
from theflow import Param
|
|
|
|
from ..components import BaseComponent
|
|
from ..documents.base import Document
|
|
|
|
|
|
class BaseEmbeddings(BaseComponent):
|
|
@abstractmethod
|
|
def run_raw(self, text: str) -> List[float]:
|
|
...
|
|
|
|
@abstractmethod
|
|
def run_batch_raw(self, text: List[str]) -> List[List[float]]:
|
|
...
|
|
|
|
@abstractmethod
|
|
def run_document(self, text: Document) -> List[float]:
|
|
...
|
|
|
|
@abstractmethod
|
|
def run_batch_document(self, text: List[Document]) -> List[List[float]]:
|
|
...
|
|
|
|
def is_document(self, text) -> bool:
|
|
if isinstance(text, Document):
|
|
return True
|
|
elif isinstance(text, List) and isinstance(text[0], Document):
|
|
return True
|
|
return False
|
|
|
|
def is_batch(self, text) -> bool:
|
|
if isinstance(text, list):
|
|
return True
|
|
return False
|
|
|
|
|
|
class LangchainEmbeddings(BaseEmbeddings):
|
|
_lc_class: Type[LCEmbeddings]
|
|
|
|
def __init__(self, **params):
|
|
if self._lc_class is None:
|
|
raise AttributeError(
|
|
"Should set _lc_class attribute to the LLM class from Langchain "
|
|
"if using LLM from Langchain"
|
|
)
|
|
|
|
self._kwargs: dict = {}
|
|
for param in list(params.keys()):
|
|
if param in self._lc_class.__fields__: # type: ignore
|
|
self._kwargs[param] = params.pop(param)
|
|
super().__init__(**params)
|
|
|
|
def __setattr__(self, name, value):
|
|
if name in self._lc_class.__fields__:
|
|
setattr(self.agent, name, value)
|
|
else:
|
|
super().__setattr__(name, value)
|
|
|
|
@Param.decorate(no_cache=True)
|
|
def agent(self):
|
|
return self._lc_class(**self._kwargs)
|
|
|
|
def run_raw(self, text: str) -> List[float]:
|
|
return self.agent.embed_query(text) # type: ignore
|
|
|
|
def run_batch_raw(self, text: List[str]) -> List[List[float]]:
|
|
return self.agent.embed_documents(text) # type: ignore
|
|
|
|
def run_document(self, text: Document) -> List[float]:
|
|
return self.agent.embed_query(text.text) # type: ignore
|
|
|
|
def run_batch_document(self, text: List[Document]) -> List[List[float]]:
|
|
return self.agent.embed_documents([each.text for each in text]) # type: ignore
|