* Create a script to auto-generate markdown docs from pipeline * Clean up documentation for Chain-of-Thought
171 lines
5.7 KiB
Python
171 lines
5.7 KiB
Python
from copy import deepcopy
|
|
from typing import List
|
|
|
|
from theflow import Compose, Node, Param
|
|
|
|
from kotaemon.base import BaseComponent
|
|
from kotaemon.llms.chats.openai import AzureChatOpenAI
|
|
from kotaemon.prompt.base import BasePromptComponent
|
|
|
|
|
|
class Thought(BaseComponent):
|
|
"""A thought in the chain of thought
|
|
|
|
- Input: `**kwargs` pairs, where key is the placeholder in the prompt, and
|
|
value is the value.
|
|
- Output: an output dictionary
|
|
|
|
_**Usage:**_
|
|
|
|
Create and run a thought:
|
|
|
|
```python
|
|
>> from kotaemon.pipelines.cot import Thought
|
|
>> thought = Thought(
|
|
prompt="How to {action} {object}?",
|
|
llm=AzureChatOpenAI(...),
|
|
post_process=lambda string: {"tutorial": string},
|
|
)
|
|
>> output = thought(action="install", object="python")
|
|
>> print(output)
|
|
{'tutorial': 'As an AI language model,...'}
|
|
```
|
|
|
|
Basically, when a thought is run, it will:
|
|
|
|
1. Populate the prompt template with the input `**kwargs`.
|
|
2. Run the LLM model with the populated prompt.
|
|
3. Post-process the LLM output with the post-processor.
|
|
|
|
This `Thought` allows chaining sequentially with the + operator. For example:
|
|
|
|
```python
|
|
>> llm = AzureChatOpenAI(...)
|
|
>> thought1 = Thought(
|
|
prompt="Word {word} in {language} is ",
|
|
llm=llm,
|
|
post_process=lambda string: {"translated": string},
|
|
)
|
|
>> thought2 = Thought(
|
|
prompt="Translate {translated} to Japanese",
|
|
llm=llm,
|
|
post_process=lambda string: {"output": string},
|
|
)
|
|
|
|
>> thought = thought1 + thought2
|
|
>> thought(word="hello", language="French")
|
|
{'word': 'hello',
|
|
'language': 'French',
|
|
'translated': '"Bonjour"',
|
|
'output': 'こんにちは (Konnichiwa)'}
|
|
```
|
|
|
|
Under the hood, when the `+` operator is used, a `ManualSequentialChainOfThought`
|
|
is created.
|
|
"""
|
|
|
|
prompt: Param[str] = Param(
|
|
help="The prompt template string. This prompt template has Python-like "
|
|
"variable placeholders, that then will be subsituted with real values when "
|
|
"this component is executed"
|
|
)
|
|
llm = Node(
|
|
default=AzureChatOpenAI, help="The LLM model to execute the input prompt"
|
|
)
|
|
post_process: Node[Compose] = Node(
|
|
help="The function post-processor that post-processes LLM output prediction ."
|
|
"It should take a string as input (this is the LLM output text) and return "
|
|
"a dictionary, where the key should"
|
|
)
|
|
|
|
@Node.decorate(depends_on="prompt")
|
|
def prompt_template(self):
|
|
"""Automatically wrap around param prompt. Can ignore"""
|
|
return BasePromptComponent(self.prompt)
|
|
|
|
def run(self, **kwargs) -> dict:
|
|
"""Run the chain of thought"""
|
|
prompt = self.prompt_template(**kwargs).text
|
|
response = self.llm(prompt).text
|
|
return self.post_process(response)
|
|
|
|
def get_variables(self) -> List[str]:
|
|
return []
|
|
|
|
def __add__(self, next_thought: "Thought") -> "ManualSequentialChainOfThought":
|
|
return ManualSequentialChainOfThought(
|
|
thoughts=[self, next_thought], llm=self.llm
|
|
)
|
|
|
|
|
|
class ManualSequentialChainOfThought(BaseComponent):
|
|
"""Perform sequential chain-of-thought with manual pre-defined prompts
|
|
|
|
This method supports variable number of steps. Each step corresponds to a
|
|
`kotaemon.pipelines.cot.Thought`. Please refer that section for
|
|
Thought's detail. This section is about chaining thought together.
|
|
|
|
_**Usage:**_
|
|
|
|
**Create and run a chain of thought without "+" operator:**
|
|
|
|
```python
|
|
>> from kotaemon.pipelines.cot import Thought, ManualSequentialChainOfThought
|
|
|
|
>> llm = AzureChatOpenAI(...)
|
|
>> thought1 = Thought(
|
|
prompt="Word {word} in {language} is ",
|
|
post_process=lambda string: {"translated": string},
|
|
)
|
|
>> thought2 = Thought(
|
|
prompt="Translate {translated} to Japanese",
|
|
post_process=lambda string: {"output": string},
|
|
)
|
|
>> thought = ManualSequentialChainOfThought(thoughts=[thought1, thought2], llm=llm)
|
|
>> thought(word="hello", language="French")
|
|
{'word': 'hello',
|
|
'language': 'French',
|
|
'translated': '"Bonjour"',
|
|
'output': 'こんにちは (Konnichiwa)'}
|
|
```
|
|
|
|
**Create and run a chain of thought without "+" operator:** Please refer the
|
|
`kotaemon.pipelines.cot.Thought` section for examples.
|
|
|
|
This chain-of-thought optionally takes a termination check callback function.
|
|
This function will be called after each thought is executed. It takes in a
|
|
dictionary of all thought outputs so far, and it returns True or False. If
|
|
True, the chain-of-thought will terminate. If unset, the default callback always
|
|
returns False.
|
|
"""
|
|
|
|
thoughts: Param[List[Thought]] = Param(
|
|
default_callback=lambda *_: [], help="List of Thought"
|
|
)
|
|
llm: Param = Param(help="The LLM model to use (base of kotaemon.llms.LLM)")
|
|
terminate: Param = Param(
|
|
default=lambda _: False,
|
|
help="Callback on terminate condition. Default to always return False",
|
|
)
|
|
|
|
def run(self, **kwargs) -> dict:
|
|
"""Run the manual chain of thought"""
|
|
|
|
inputs = deepcopy(kwargs)
|
|
for idx, thought in enumerate(self.thoughts):
|
|
if self.llm:
|
|
thought.llm = self.llm
|
|
self._prepare_child(thought, f"thought{idx}")
|
|
|
|
output = thought(**inputs)
|
|
inputs.update(output)
|
|
if self.terminate(inputs):
|
|
break
|
|
|
|
return inputs
|
|
|
|
def __add__(self, next_thought: Thought) -> "ManualSequentialChainOfThought":
|
|
return ManualSequentialChainOfThought(
|
|
thoughts=self.thoughts + [next_thought], llm=self.llm
|
|
)
|