This CL implements: - The logic to export log to Excel. - Route the export logic in the UI. - Demonstrate this functionality in `./examples/promptui` project.
44 lines
1.5 KiB
Python
44 lines
1.5 KiB
Python
import tempfile
|
|
from typing import List
|
|
|
|
from theflow import Node
|
|
|
|
from kotaemon.base import BaseComponent
|
|
from kotaemon.embeddings import AzureOpenAIEmbeddings
|
|
from kotaemon.llms.completions.openai import AzureOpenAI
|
|
from kotaemon.pipelines.retrieving import RetrieveDocumentFromVectorStorePipeline
|
|
from kotaemon.vectorstores import ChromaVectorStore
|
|
|
|
|
|
class Pipeline(BaseComponent):
|
|
vectorstore_path: str = str(tempfile.mkdtemp())
|
|
llm: Node[AzureOpenAI] = Node(
|
|
default=AzureOpenAI,
|
|
default_kwargs={
|
|
"openai_api_base": "https://test.openai.azure.com/",
|
|
"openai_api_key": "some-key",
|
|
"openai_api_version": "2023-03-15-preview",
|
|
"deployment_name": "gpt35turbo",
|
|
"temperature": 0,
|
|
"request_timeout": 60,
|
|
},
|
|
)
|
|
|
|
@Node.decorate(depends_on=["vectorstore_path"])
|
|
def retrieving_pipeline(self):
|
|
vector_store = ChromaVectorStore(self.vectorstore_path)
|
|
embedding = AzureOpenAIEmbeddings(
|
|
model="text-embedding-ada-002",
|
|
deployment="embedding-deployment",
|
|
openai_api_base="https://test.openai.azure.com/",
|
|
openai_api_key="some-key",
|
|
)
|
|
|
|
return RetrieveDocumentFromVectorStorePipeline(
|
|
vector_store=vector_store, embedding=embedding
|
|
)
|
|
|
|
def run_raw(self, text: str) -> str:
|
|
matched_texts: List[str] = self.retrieving_pipeline(text)
|
|
return self.llm("\n".join(matched_texts)).text[0]
|