kotaemon/tests/test_embedding_models.py

98 lines
3.2 KiB
Python

import json
from pathlib import Path
from unittest.mock import patch
from kotaemon.base import Document
from kotaemon.embeddings import (
AzureOpenAIEmbeddings,
CohereEmbdeddings,
HuggingFaceEmbeddings,
)
with open(Path(__file__).parent / "resources" / "embedding_openai_batch.json") as f:
openai_embedding_batch = json.load(f)
with open(Path(__file__).parent / "resources" / "embedding_openai.json") as f:
openai_embedding = json.load(f)
@patch(
"openai.resources.embeddings.Embeddings.create",
side_effect=lambda *args, **kwargs: openai_embedding,
)
def test_azureopenai_embeddings_raw(openai_embedding_call):
model = AzureOpenAIEmbeddings(
model="text-embedding-ada-002",
deployment="embedding-deployment",
azure_endpoint="https://test.openai.azure.com/",
openai_api_key="some-key",
)
output = model("Hello world")
assert isinstance(output, list)
assert isinstance(output[0], Document)
assert isinstance(output[0].embedding, list)
assert isinstance(output[0].embedding[0], float)
openai_embedding_call.assert_called()
@patch(
"openai.resources.embeddings.Embeddings.create",
side_effect=lambda *args, **kwargs: openai_embedding_batch,
)
def test_azureopenai_embeddings_batch_raw(openai_embedding_call):
model = AzureOpenAIEmbeddings(
model="text-embedding-ada-002",
deployment="embedding-deployment",
azure_endpoint="https://test.openai.azure.com/",
openai_api_key="some-key",
)
output = model(["Hello world", "Goodbye world"])
assert isinstance(output, list)
assert isinstance(output[0], Document)
assert isinstance(output[0].embedding, list)
assert isinstance(output[0].embedding[0], float)
openai_embedding_call.assert_called()
@patch(
"sentence_transformers.SentenceTransformer",
side_effect=lambda *args, **kwargs: None,
)
@patch(
"langchain.embeddings.huggingface.HuggingFaceBgeEmbeddings.embed_documents",
side_effect=lambda *args, **kwargs: [[1.0, 2.1, 3.2]],
)
def test_huggingface_embeddings(
langchain_huggingface_embedding_call, sentence_transformers_init
):
model = HuggingFaceEmbeddings(
model_name="intfloat/multilingual-e5-large",
model_kwargs={"device": "cpu"},
encode_kwargs={"normalize_embeddings": False},
)
output = model("Hello World")
assert isinstance(output, list)
assert isinstance(output[0], Document)
assert isinstance(output[0].embedding, list)
assert isinstance(output[0].embedding[0], float)
sentence_transformers_init.assert_called()
langchain_huggingface_embedding_call.assert_called()
@patch(
"langchain.embeddings.cohere.CohereEmbeddings.embed_documents",
side_effect=lambda *args, **kwargs: [[1.0, 2.1, 3.2]],
)
def test_cohere_embeddings(langchain_cohere_embedding_call):
model = CohereEmbdeddings(
model="embed-english-light-v2.0", cohere_api_key="my-api-key"
)
output = model("Hello World")
assert isinstance(output, list)
assert isinstance(output[0], Document)
assert isinstance(output[0].embedding, list)
assert isinstance(output[0].embedding[0], float)
langchain_cohere_embedding_call.assert_called()