kotaemon/knowledgehub/llms/chats/langchain_based.py

150 lines
4.6 KiB
Python

from __future__ import annotations
import logging
from kotaemon.base import BaseMessage, HumanMessage, LLMInterface
from .base import ChatLLM
logger = logging.getLogger(__name__)
class LCChatMixin:
def _get_lc_class(self):
raise NotImplementedError(
"Please return the relevant Langchain class in in _get_lc_class"
)
def __init__(self, **params):
self._lc_class = self._get_lc_class()
self._obj = self._lc_class(**params)
self._kwargs: dict = params
super().__init__()
def run(
self, messages: str | BaseMessage | list[BaseMessage], **kwargs
) -> LLMInterface:
"""Generate response from messages
Args:
messages: history of messages to generate response from
**kwargs: additional arguments to pass to the langchain chat model
Returns:
LLMInterface: generated response
"""
input_: list[BaseMessage] = []
if isinstance(messages, str):
input_ = [HumanMessage(content=messages)]
elif isinstance(messages, BaseMessage):
input_ = [messages]
else:
input_ = messages
pred = self._obj.generate(messages=[input_], **kwargs)
all_text = [each.text for each in pred.generations[0]]
all_messages = [each.message for each in pred.generations[0]]
completion_tokens, total_tokens, prompt_tokens = 0, 0, 0
try:
if pred.llm_output is not None:
completion_tokens = pred.llm_output["token_usage"]["completion_tokens"]
total_tokens = pred.llm_output["token_usage"]["total_tokens"]
prompt_tokens = pred.llm_output["token_usage"]["prompt_tokens"]
except Exception:
logger.warning(
f"Cannot get token usage from LLM output for {self._lc_class.__name__}"
)
return LLMInterface(
text=all_text[0] if len(all_text) > 0 else "",
candidates=all_text,
completion_tokens=completion_tokens,
total_tokens=total_tokens,
prompt_tokens=prompt_tokens,
messages=all_messages,
logits=[],
)
def __repr__(self):
kwargs = []
for key, value_obj in self._kwargs.items():
value = repr(value_obj)
kwargs.append(f"{key}={value}")
kwargs_repr = ", ".join(kwargs)
return f"{self.__class__.__name__}({kwargs_repr})"
def __str__(self):
kwargs = []
for key, value_obj in self._kwargs.items():
value = str(value_obj)
if len(value) > 20:
value = f"{value[:15]}..."
kwargs.append(f"{key}={value}")
kwargs_repr = ", ".join(kwargs)
return f"{self.__class__.__name__}({kwargs_repr})"
def __setattr__(self, name, value):
if name == "_lc_class":
return super().__setattr__(name, value)
if name in self._lc_class.__fields__:
self._kwargs[name] = value
self._obj = self._lc_class(**self._kwargs)
else:
super().__setattr__(name, value)
def __getattr__(self, name):
if name in self._kwargs:
return self._kwargs[name]
return getattr(self._obj, name)
def dump(self):
return {
"__type__": f"{self.__module__}.{self.__class__.__qualname__}",
**self._kwargs,
}
def specs(self, path: str):
path = path.strip(".")
if "." in path:
raise ValueError("path should not contain '.'")
if path in self._lc_class.__fields__:
return {
"__type__": "theflow.base.ParamAttr",
"refresh_on_set": True,
"strict_type": True,
}
raise ValueError(f"Invalid param {path}")
class AzureChatOpenAI(LCChatMixin, ChatLLM):
def __init__(
self,
azure_endpoint: str | None = None,
openai_api_key: str | None = None,
openai_api_version: str = "",
deployment_name: str | None = None,
temperature: float = 0.7,
request_timeout: float | None = None,
**params,
):
super().__init__(
azure_endpoint=azure_endpoint,
openai_api_key=openai_api_key,
openai_api_version=openai_api_version,
deployment_name=deployment_name,
temperature=temperature,
request_timeout=request_timeout,
**params,
)
def _get_lc_class(self):
import langchain.chat_models
return langchain.chat_models.AzureChatOpenAI