From pipeline > config > UI. Provide example project for promptui - Pipeline to config: `kotaemon.contribs.promptui.config.export_pipeline_to_config`. The config follows schema specified in this document: https://cinnamon-ai.atlassian.net/wiki/spaces/ATM/pages/2748711193/Technical+Detail. Note: this implementation exclude the logs, which will be handled in AUR-408. - Config to UI: `kotaemon.contribs.promptui.build_from_yaml` - Example project is located at `examples/promptui/`
87 lines
3.0 KiB
Python
87 lines
3.0 KiB
Python
import pytest
|
|
|
|
from kotaemon.contribs.promptui.config import export_pipeline_to_config
|
|
from kotaemon.contribs.promptui.ui import build_from_dict
|
|
|
|
|
|
@pytest.fixture()
|
|
def simple_pipeline_cls(tmp_path):
|
|
"""Create a pipeline class that can be used"""
|
|
from typing import List
|
|
|
|
from theflow import Node
|
|
|
|
from kotaemon.base import BaseComponent
|
|
from kotaemon.embeddings import AzureOpenAIEmbeddings
|
|
from kotaemon.llms.completions.openai import AzureOpenAI
|
|
from kotaemon.pipelines.retrieving import (
|
|
RetrieveDocumentFromVectorStorePipeline,
|
|
)
|
|
from kotaemon.vectorstores import ChromaVectorStore
|
|
|
|
class Pipeline(BaseComponent):
|
|
vectorstore_path: str = str(tmp_path)
|
|
llm: Node[AzureOpenAI] = Node(
|
|
default=AzureOpenAI,
|
|
default_kwargs={
|
|
"openai_api_base": "https://test.openai.azure.com/",
|
|
"openai_api_key": "some-key",
|
|
"openai_api_version": "2023-03-15-preview",
|
|
"deployment_name": "gpt35turbo",
|
|
"temperature": 0,
|
|
"request_timeout": 60,
|
|
},
|
|
)
|
|
|
|
@Node.decorate(depends_on=["vectorstore_path"])
|
|
def retrieving_pipeline(self):
|
|
vector_store = ChromaVectorStore(self.vectorstore_path)
|
|
embedding = AzureOpenAIEmbeddings(
|
|
model="text-embedding-ada-002",
|
|
deployment="embedding-deployment",
|
|
openai_api_base="https://test.openai.azure.com/",
|
|
openai_api_key="some-key",
|
|
)
|
|
|
|
return RetrieveDocumentFromVectorStorePipeline(
|
|
vector_store=vector_store, embedding=embedding
|
|
)
|
|
|
|
def run_raw(self, text: str) -> str:
|
|
matched_texts: List[str] = self.retrieving_pipeline(text)
|
|
return self.llm("\n".join(matched_texts)).text[0]
|
|
|
|
return Pipeline
|
|
|
|
|
|
Pipeline = simple_pipeline_cls
|
|
|
|
|
|
class TestPromptConfig:
|
|
def test_export_prompt_config(self, simple_pipeline_cls):
|
|
"""Test if the prompt config is exported correctly"""
|
|
pipeline = simple_pipeline_cls()
|
|
config_dict = export_pipeline_to_config(pipeline)
|
|
config = list(config_dict.values())[0]
|
|
|
|
assert "inputs" in config, "inputs should be in config"
|
|
assert "text" in config["inputs"], "inputs should have config"
|
|
|
|
assert "params" in config, "params should be in config"
|
|
assert "vectorstore_path" in config["params"]
|
|
assert "llm.deployment_name" in config["params"]
|
|
assert "llm.openai_api_base" in config["params"]
|
|
assert "llm.openai_api_key" in config["params"]
|
|
assert "llm.openai_api_version" in config["params"]
|
|
assert "llm.request_timeout" in config["params"]
|
|
assert "llm.temperature" in config["params"]
|
|
|
|
|
|
class TestPromptUI:
|
|
def test_uigeneration(self, simple_pipeline_cls):
|
|
"""Test if the gradio UI is exposed without any problem"""
|
|
pipeline = simple_pipeline_cls()
|
|
config = export_pipeline_to_config(pipeline)
|
|
|
|
build_from_dict(config)
|