kotaemon/tests/test_promptui.py
Nguyen Trung Duc (john) c6dd01e820 [AUR-338, AUR-406, AUR-407] Export pipeline to config for PromptUI. Construct PromptUI dynamically based on config. (#16)
From pipeline > config > UI. Provide example project for promptui

- Pipeline to config: `kotaemon.contribs.promptui.config.export_pipeline_to_config`. The config follows schema specified in this document: https://cinnamon-ai.atlassian.net/wiki/spaces/ATM/pages/2748711193/Technical+Detail. Note: this implementation exclude the logs, which will be handled in AUR-408.
- Config to UI: `kotaemon.contribs.promptui.build_from_yaml`
- Example project is located at `examples/promptui/`
2023-09-21 14:27:23 +07:00

87 lines
3.0 KiB
Python

import pytest
from kotaemon.contribs.promptui.config import export_pipeline_to_config
from kotaemon.contribs.promptui.ui import build_from_dict
@pytest.fixture()
def simple_pipeline_cls(tmp_path):
"""Create a pipeline class that can be used"""
from typing import List
from theflow import Node
from kotaemon.base import BaseComponent
from kotaemon.embeddings import AzureOpenAIEmbeddings
from kotaemon.llms.completions.openai import AzureOpenAI
from kotaemon.pipelines.retrieving import (
RetrieveDocumentFromVectorStorePipeline,
)
from kotaemon.vectorstores import ChromaVectorStore
class Pipeline(BaseComponent):
vectorstore_path: str = str(tmp_path)
llm: Node[AzureOpenAI] = Node(
default=AzureOpenAI,
default_kwargs={
"openai_api_base": "https://test.openai.azure.com/",
"openai_api_key": "some-key",
"openai_api_version": "2023-03-15-preview",
"deployment_name": "gpt35turbo",
"temperature": 0,
"request_timeout": 60,
},
)
@Node.decorate(depends_on=["vectorstore_path"])
def retrieving_pipeline(self):
vector_store = ChromaVectorStore(self.vectorstore_path)
embedding = AzureOpenAIEmbeddings(
model="text-embedding-ada-002",
deployment="embedding-deployment",
openai_api_base="https://test.openai.azure.com/",
openai_api_key="some-key",
)
return RetrieveDocumentFromVectorStorePipeline(
vector_store=vector_store, embedding=embedding
)
def run_raw(self, text: str) -> str:
matched_texts: List[str] = self.retrieving_pipeline(text)
return self.llm("\n".join(matched_texts)).text[0]
return Pipeline
Pipeline = simple_pipeline_cls
class TestPromptConfig:
def test_export_prompt_config(self, simple_pipeline_cls):
"""Test if the prompt config is exported correctly"""
pipeline = simple_pipeline_cls()
config_dict = export_pipeline_to_config(pipeline)
config = list(config_dict.values())[0]
assert "inputs" in config, "inputs should be in config"
assert "text" in config["inputs"], "inputs should have config"
assert "params" in config, "params should be in config"
assert "vectorstore_path" in config["params"]
assert "llm.deployment_name" in config["params"]
assert "llm.openai_api_base" in config["params"]
assert "llm.openai_api_key" in config["params"]
assert "llm.openai_api_version" in config["params"]
assert "llm.request_timeout" in config["params"]
assert "llm.temperature" in config["params"]
class TestPromptUI:
def test_uigeneration(self, simple_pipeline_cls):
"""Test if the gradio UI is exposed without any problem"""
pipeline = simple_pipeline_cls()
config = export_pipeline_to_config(pipeline)
build_from_dict(config)