* Move splitter into indexing module
* Rename post_processing module to parsers
* Migrate LLM-specific composite pipelines into llms module
This change moves the `splitters` module into `indexing` module. The `indexing` module will be created soon, to house `indexing`-related components.
This change renames `post_processing` module into `parsers` module. Post-processing is a generic term which provides very little information. In the future, we will add other extractors into the `parser` module, like Metadata extractor...
This change migrates the composite elements into `llms` module. These elements heavily assume that the internal nodes are llm-specific. As a result, migrating these elements into `llms` module will make them more discoverable, and simplify code base structure.
- Use cases related to LLM call: https://cinnamon-ai.atlassian.net/browse/AUR-388?focusedCommentId=34873
- Sample usages: `test_llms_chat_models.py` and `test_llms_completion_models.py`:
```python
from kotaemon.llms.chats.openai import AzureChatOpenAI
model = AzureChatOpenAI(
openai_api_base="https://test.openai.azure.com/",
openai_api_key="some-key",
openai_api_version="2023-03-15-preview",
deployment_name="gpt35turbo",
temperature=0,
request_timeout=60,
)
output = model("hello world")
```
For the LLM-call component, I decide to wrap around Langchain's LLM models and Langchain's Chat models. And set the interface as follow:
- Completion LLM component:
```python
class CompletionLLM:
def run_raw(self, text: str) -> LLMInterface:
# Run text completion: str in -> LLMInterface out
def run_batch_raw(self, text: list[str]) -> list[LLMInterface]:
# Run text completion in batch: list[str] in -> list[LLMInterface] out
# run_document and run_batch_document just reuse run_raw and run_batch_raw, due to unclear use case
```
- Chat LLM component:
```python
class ChatLLM:
def run_raw(self, text: str) -> LLMInterface:
# Run chat completion (no chat history): str in -> LLMInterface out
def run_batch_raw(self, text: list[str]) -> list[LLMInterface]:
# Run chat completion in batch mode (no chat history): list[str] in -> list[LLMInterface] out
def run_document(self, text: list[BaseMessage]) -> LLMInterface:
# Run chat completion (with chat history): list[langchain's BaseMessage] in -> LLMInterface out
def run_batch_document(self, text: list[list[BaseMessage]]) -> list[LLMInterface]:
# Run chat completion in batch mode (with chat history): list[list[langchain's BaseMessage]] in -> list[LLMInterface] out
```
- The LLMInterface is as follow:
```python
@dataclass
class LLMInterface:
text: list[str]
completion_tokens: int = -1
total_tokens: int = -1
prompt_tokens: int = -1
logits: list[list[float]] = field(default_factory=list)
```