Refactor embeddings and provide vanilla OpenAI-based embeddings (#11)
* Prepend all Langchain-based embeddings with LC * Provide vanilla OpenAI embeddings * Add test for AzureOpenAIEmbeddings and OpenAIEmbeddings * Fix disallowed empty string * Use OpenAIEmbeddings in flowsettings --------- Co-authored-by: ian_Cin <ian@cinnamon.is>
This commit is contained in:
committed by
GitHub
parent
e75354d410
commit
ed10020ea3
@@ -59,7 +59,7 @@ class BaseOpenAIEmbeddings(BaseEmbeddings):
|
||||
input_ = self.prepare_input(text)
|
||||
client = self.prepare_client(async_version=False)
|
||||
resp = self.openai_response(
|
||||
client, input=[_.text for _ in input_], **kwargs
|
||||
client, input=[_.text if _.text else " " for _ in input_], **kwargs
|
||||
).dict()
|
||||
output_ = sorted(resp["data"], key=lambda x: x["index"])
|
||||
return [
|
||||
@@ -73,7 +73,7 @@ class BaseOpenAIEmbeddings(BaseEmbeddings):
|
||||
input_ = self.prepare_input(text)
|
||||
client = self.prepare_client(async_version=True)
|
||||
resp = await self.openai_response(
|
||||
client, input=[_.text for _ in input_], **kwargs
|
||||
client, input=[_.text if _.text else " " for _ in input_], **kwargs
|
||||
).dict()
|
||||
output_ = sorted(resp["data"], key=lambda x: x["index"])
|
||||
return [
|
||||
|
Reference in New Issue
Block a user