improve llms selection of simple reasoning pipeline and fix non persistent settings bug
- improve llms selection of simple reasoning pipeline - enable llms selection for reranking - fix non-persistent settings bug
This commit is contained in:
commit
e8d3c70276
|
@ -17,8 +17,7 @@ if machine == "x86_64":
|
|||
BINARY_REMOTE_NAME = f"frpc_{platform.system().lower()}_{machine.lower()}"
|
||||
EXTENSION = ".exe" if os.name == "nt" else ""
|
||||
BINARY_URL = (
|
||||
"some-endpoint.com"
|
||||
f"/kotaemon/tunneling/{VERSION}/{BINARY_REMOTE_NAME}{EXTENSION}"
|
||||
"some-endpoint.com" f"/kotaemon/tunneling/{VERSION}/{BINARY_REMOTE_NAME}{EXTENSION}"
|
||||
)
|
||||
|
||||
BINARY_FILENAME = f"{BINARY_REMOTE_NAME}_v{VERSION}"
|
||||
|
|
|
@ -194,7 +194,6 @@ class ChatOpenAI(LCChatMixin, ChatLLM): # type: ignore
|
|||
|
||||
|
||||
class AzureChatOpenAI(LCChatMixin, ChatLLM): # type: ignore
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
azure_endpoint: str | None = None,
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
"""Common components, some kind of config"""
|
||||
|
||||
import logging
|
||||
from functools import cache
|
||||
from pathlib import Path
|
||||
|
@ -71,7 +72,7 @@ class ModelPool:
|
|||
}
|
||||
|
||||
def options(self) -> dict:
|
||||
"""Present a list of models"""
|
||||
"""Present a dict of models"""
|
||||
return self._models
|
||||
|
||||
def get_random_name(self) -> str:
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import shutil
|
||||
import warnings
|
||||
from collections import defaultdict
|
||||
|
@ -8,7 +9,7 @@ from hashlib import sha256
|
|||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from ktem.components import embeddings, filestorage_path, llms
|
||||
from ktem.components import embeddings, filestorage_path
|
||||
from ktem.db.models import engine
|
||||
from llama_index.vector_stores import (
|
||||
FilterCondition,
|
||||
|
@ -25,10 +26,12 @@ from theflow.utils.modules import import_dotted_string
|
|||
from kotaemon.base import RetrievedDocument
|
||||
from kotaemon.indices import VectorIndexing, VectorRetrieval
|
||||
from kotaemon.indices.ingests import DocumentIngestor
|
||||
from kotaemon.indices.rankings import BaseReranking, LLMReranking
|
||||
from kotaemon.indices.rankings import BaseReranking
|
||||
|
||||
from .base import BaseFileIndexIndexing, BaseFileIndexRetriever
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@lru_cache
|
||||
def dev_settings():
|
||||
|
@ -67,7 +70,7 @@ class DocumentRetrievalPipeline(BaseFileIndexRetriever):
|
|||
vector_retrieval: VectorRetrieval = VectorRetrieval.withx(
|
||||
embedding=embeddings.get_default(),
|
||||
)
|
||||
reranker: BaseReranking = LLMReranking.withx(llm=llms.get_lowest_cost())
|
||||
reranker: BaseReranking
|
||||
get_extra_table: bool = False
|
||||
|
||||
def run(
|
||||
|
@ -153,7 +156,23 @@ class DocumentRetrievalPipeline(BaseFileIndexRetriever):
|
|||
|
||||
@classmethod
|
||||
def get_user_settings(cls) -> dict:
|
||||
from ktem.components import llms
|
||||
|
||||
try:
|
||||
reranking_llm = llms.get_lowest_cost_name()
|
||||
reranking_llm_choices = list(llms.options().keys())
|
||||
except Exception as e:
|
||||
logger.error(e)
|
||||
reranking_llm = None
|
||||
reranking_llm_choices = []
|
||||
|
||||
return {
|
||||
"reranking_llm": {
|
||||
"name": "LLM for reranking",
|
||||
"value": reranking_llm,
|
||||
"component": "dropdown",
|
||||
"choices": reranking_llm_choices,
|
||||
},
|
||||
"separate_embedding": {
|
||||
"name": "Use separate embedding",
|
||||
"value": False,
|
||||
|
@ -185,7 +204,7 @@ class DocumentRetrievalPipeline(BaseFileIndexRetriever):
|
|||
},
|
||||
"use_reranking": {
|
||||
"name": "Use reranking",
|
||||
"value": True,
|
||||
"value": False,
|
||||
"choices": [True, False],
|
||||
"component": "checkbox",
|
||||
},
|
||||
|
@ -199,7 +218,10 @@ class DocumentRetrievalPipeline(BaseFileIndexRetriever):
|
|||
settings: the settings of the app
|
||||
kwargs: other arguments
|
||||
"""
|
||||
retriever = cls(get_extra_table=user_settings["prioritize_table"])
|
||||
retriever = cls(
|
||||
get_extra_table=user_settings["prioritize_table"],
|
||||
reranker=user_settings["reranking_llm"],
|
||||
)
|
||||
if not user_settings["use_reranking"]:
|
||||
retriever.reranker = None # type: ignore
|
||||
|
||||
|
|
|
@ -87,6 +87,28 @@ class SettingsPage(BasePage):
|
|||
self.reasoning_tab()
|
||||
|
||||
def on_subscribe_public_events(self):
|
||||
"""
|
||||
Subscribes to public events related to user management.
|
||||
|
||||
This function is responsible for subscribing to the "onSignIn" event, which is
|
||||
triggered when a user signs in. It registers two event handlers for this event.
|
||||
|
||||
The first event handler, "load_setting", is responsible for loading the user's
|
||||
settings when they sign in. It takes the user ID as input and returns the
|
||||
settings state and a list of component outputs. The progress indicator for this
|
||||
event is set to "hidden".
|
||||
|
||||
The second event handler, "get_name", is responsible for retrieving the
|
||||
username of the current user. It takes the user ID as input and returns the
|
||||
username if it exists, otherwise it returns "___". The progress indicator for
|
||||
this event is also set to "hidden".
|
||||
|
||||
Parameters:
|
||||
self (object): The instance of the class.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
if self._app.f_user_management:
|
||||
self._app.subscribe_event(
|
||||
name="onSignIn",
|
||||
|
@ -290,3 +312,12 @@ class SettingsPage(BasePage):
|
|||
def component_names(self):
|
||||
"""Get the setting components"""
|
||||
return self._settings_keys
|
||||
|
||||
def _on_app_created(self):
|
||||
if not self._app.f_user_management:
|
||||
self._app.app.load(
|
||||
self.load_setting,
|
||||
inputs=self._user_id,
|
||||
outputs=[self._settings_state] + self.components(),
|
||||
show_progress="hidden",
|
||||
)
|
||||
|
|
|
@ -159,6 +159,7 @@ class AnswerWithContextPipeline(BaseComponent):
|
|||
qa_table_template: str = DEFAULT_QA_TABLE_PROMPT
|
||||
qa_chatbot_template: str = DEFAULT_QA_CHATBOT_PROMPT
|
||||
|
||||
enable_citation: bool = False
|
||||
system_prompt: str = ""
|
||||
lang: str = "English" # support English and Japanese
|
||||
|
||||
|
@ -200,7 +201,8 @@ class AnswerWithContextPipeline(BaseComponent):
|
|||
lang=self.lang,
|
||||
)
|
||||
|
||||
if evidence:
|
||||
citation_task = None
|
||||
if evidence and self.enable_citation:
|
||||
citation_task = asyncio.create_task(
|
||||
self.citation_pipeline.ainvoke(context=evidence, question=question)
|
||||
)
|
||||
|
@ -226,7 +228,7 @@ class AnswerWithContextPipeline(BaseComponent):
|
|||
|
||||
# retrieve the citation
|
||||
print("Waiting for citation task")
|
||||
if evidence:
|
||||
if citation_task is not None:
|
||||
citation = await citation_task
|
||||
else:
|
||||
citation = None
|
||||
|
@ -353,7 +355,15 @@ class FullQAPipeline(BaseReasoning):
|
|||
_id = cls.get_info()["id"]
|
||||
|
||||
pipeline = FullQAPipeline(retrievers=retrievers)
|
||||
pipeline.answering_pipeline.llm = llms.get_highest_accuracy()
|
||||
pipeline.answering_pipeline.llm = llms[
|
||||
settings[f"reasoning.options.{_id}.main_llm"]
|
||||
]
|
||||
pipeline.answering_pipeline.citation_pipeline.llm = llms[
|
||||
settings[f"reasoning.options.{_id}.citation_llm"]
|
||||
]
|
||||
pipeline.answering_pipeline.enable_citation = settings[
|
||||
f"reasoning.options.{_id}.highlight_citation"
|
||||
]
|
||||
pipeline.answering_pipeline.lang = {"en": "English", "ja": "Japanese"}.get(
|
||||
settings["reasoning.lang"], "English"
|
||||
)
|
||||
|
@ -384,7 +394,7 @@ class FullQAPipeline(BaseReasoning):
|
|||
return {
|
||||
"highlight_citation": {
|
||||
"name": "Highlight Citation",
|
||||
"value": True,
|
||||
"value": False,
|
||||
"component": "checkbox",
|
||||
},
|
||||
"citation_llm": {
|
||||
|
|
Loading…
Reference in New Issue
Block a user