Refactor the index component and update the MVP insurance accordingly (#90)

Refactor the `kotaemon/pipelines` module to `kotaemon/indices`. Create the VectorIndex.

Note: currently I place `qa` to be inside `kotaemon/indices` since at the moment we only have `qa` in RAG. At the same time, I think `qa` can be an independent module in `kotaemon/qa`. Since this can be changed later, I still go at the 1st option for now to observe if we can change it later.
This commit is contained in:
Duc Nguyen (john)
2023-11-30 18:35:07 +07:00
committed by GitHub
parent 8e3a1d193f
commit e34b1e4c6d
25 changed files with 396 additions and 605 deletions

View File

@@ -0,0 +1,7 @@
from .citation import CitationPipeline
from .text_based import CitationQAPipeline
__all__ = [
"CitationPipeline",
"CitationQAPipeline",
]

View File

@@ -0,0 +1,106 @@
from typing import Iterator, List
from pydantic import BaseModel, Field
from kotaemon.base import BaseComponent
from kotaemon.base.schema import HumanMessage, SystemMessage
from kotaemon.llms import BaseLLM
class FactWithEvidence(BaseModel):
"""Class representing a single statement.
Each fact has a body and a list of sources.
If there are multiple facts make sure to break them apart
such that each one only uses a set of sources that are relevant to it.
"""
fact: str = Field(..., description="Body of the sentence, as part of a response")
substring_quote: List[str] = Field(
...,
description=(
"Each source should be a direct quote from the context, "
"as a substring of the original content"
),
)
def _get_span(self, quote: str, context: str, errs: int = 100) -> Iterator[str]:
import regex
minor = quote
major = context
errs_ = 0
s = regex.search(f"({minor}){{e<={errs_}}}", major)
while s is None and errs_ <= errs:
errs_ += 1
s = regex.search(f"({minor}){{e<={errs_}}}", major)
if s is not None:
yield from s.spans()
def get_spans(self, context: str) -> Iterator[str]:
for quote in self.substring_quote:
yield from self._get_span(quote, context)
class QuestionAnswer(BaseModel):
"""A question and its answer as a list of facts each one should have a source.
each sentence contains a body and a list of sources."""
question: str = Field(..., description="Question that was asked")
answer: List[FactWithEvidence] = Field(
...,
description=(
"Body of the answer, each fact should be "
"its separate object with a body and a list of sources"
),
)
class CitationPipeline(BaseComponent):
"""Citation pipeline to extract cited evidences from source
(based on input question)"""
llm: BaseLLM
def run(
self,
context: str,
question: str,
) -> QuestionAnswer:
schema = QuestionAnswer.schema()
function = {
"name": schema["title"],
"description": schema["description"],
"parameters": schema,
}
llm_kwargs = {
"functions": [function],
"function_call": {"name": function["name"]},
}
messages = [
SystemMessage(
content=(
"You are a world class algorithm to answer "
"questions with correct and exact citations."
)
),
HumanMessage(content="Answer question using the following context"),
HumanMessage(content=context),
HumanMessage(content=f"Question: {question}"),
HumanMessage(
content=(
"Tips: Make sure to cite your sources, "
"and use the exact words from the context."
)
),
]
llm_output = self.llm(messages, **llm_kwargs)
function_output = llm_output.messages[0].additional_kwargs["function_call"][
"arguments"
]
output = QuestionAnswer.parse_raw(function_output)
return output

View File

@@ -0,0 +1,62 @@
import os
from kotaemon.base import BaseComponent, Document, RetrievedDocument
from kotaemon.llms import AzureChatOpenAI, BaseLLM, PromptTemplate
from .citation import CitationPipeline
class CitationQAPipeline(BaseComponent):
"""Answering question from a text corpus with citation"""
qa_prompt_template: PromptTemplate = PromptTemplate(
'Answer the following question: "{question}". '
"The context is: \n{context}\nAnswer: "
)
llm: BaseLLM = AzureChatOpenAI.withx(
azure_endpoint="https://bleh-dummy.openai.azure.com/",
openai_api_key=os.environ.get("OPENAI_API_KEY", ""),
openai_api_version="2023-07-01-preview",
deployment_name="dummy-q2-16k",
temperature=0,
request_timeout=60,
)
def _format_doc_text(self, text: str) -> str:
"""Format the text of each document"""
return text.replace("\n", " ")
def _format_retrieved_context(self, documents: list[RetrievedDocument]) -> str:
"""Format the texts between all documents"""
matched_texts: list[str] = [
self._format_doc_text(doc.text) for doc in documents
]
return "\n\n".join(matched_texts)
def run(
self,
question: str,
documents: list[RetrievedDocument],
use_citation: bool = False,
**kwargs
) -> Document:
# retrieve relevant documents as context
context = self._format_retrieved_context(documents)
self.log_progress(".context", context=context)
# generate the answer
prompt = self.qa_prompt_template.populate(
context=context,
question=question,
)
self.log_progress(".prompt", prompt=prompt)
answer_text = self.llm(prompt).text
if use_citation:
# run citation pipeline
citation_pipeline = CitationPipeline(llm=self.llm)
citation = citation_pipeline(context=context, question=question)
else:
citation = None
answer = Document(text=answer_text, metadata={"citation": citation})
return answer