Simplify the BaseComponent
inteface (#64)
This change remove `BaseComponent`'s: - run_raw - run_batch_raw - run_document - run_batch_document - is_document - is_batch Each component is expected to support multiple types of inputs and a single type of output. Since we want the component to work out-of-the-box with both standardized and customized use cases, supporting multiple types of inputs are expected. At the same time, to reduce the complexity of understanding how to use a component, we restrict a component to only have a single output type. To accommodate these changes, we also refactor some components to remove their run_raw, run_batch_raw... methods, and to decide the common output interface for those components. Tests are updated accordingly. Commit changes: * Add kwargs to vector store's query * Simplify the BaseComponent * Update tests * Remove support for Python 3.8 and 3.9 * Bump version 0.3.0 * Fix github PR caching still use old environment after bumping version --------- Co-authored-by: ian <ian@cinnamon.is>
This commit is contained in:
committed by
GitHub
parent
6095526dc7
commit
d79b3744cb
@@ -1,4 +1,7 @@
|
||||
from copy import deepcopy
|
||||
|
||||
import pytest
|
||||
from openai.types.chat.chat_completion import ChatCompletion
|
||||
|
||||
from kotaemon.composite import (
|
||||
GatedBranchingPipeline,
|
||||
@@ -10,6 +13,29 @@ from kotaemon.llms.chats.openai import AzureChatOpenAI
|
||||
from kotaemon.post_processing.extractor import RegexExtractor
|
||||
from kotaemon.prompt.base import BasePromptComponent
|
||||
|
||||
_openai_chat_completion_response = ChatCompletion.parse_obj(
|
||||
{
|
||||
"id": "chatcmpl-7qyuw6Q1CFCpcKsMdFkmUPUa7JP2x",
|
||||
"object": "chat.completion",
|
||||
"created": 1692338378,
|
||||
"model": "gpt-35-turbo",
|
||||
"system_fingerprint": None,
|
||||
"choices": [
|
||||
{
|
||||
"index": 0,
|
||||
"finish_reason": "stop",
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": "This is a test 123",
|
||||
"finish_reason": "length",
|
||||
"logprobs": None,
|
||||
},
|
||||
}
|
||||
],
|
||||
"usage": {"completion_tokens": 9, "prompt_tokens": 10, "total_tokens": 19},
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_llm():
|
||||
@@ -19,7 +45,6 @@ def mock_llm():
|
||||
openai_api_version="OPENAI_API_VERSION",
|
||||
deployment_name="dummy-q2-gpt35",
|
||||
temperature=0,
|
||||
request_timeout=600,
|
||||
)
|
||||
|
||||
|
||||
@@ -61,11 +86,12 @@ def mock_gated_linear_pipeline_negative(mock_prompt, mock_llm, mock_post_process
|
||||
|
||||
|
||||
def test_simple_linear_pipeline_run(mocker, mock_simple_linear_pipeline):
|
||||
openai_mocker = mocker.patch.object(
|
||||
AzureChatOpenAI, "run", return_value="This is a test 123"
|
||||
openai_mocker = mocker.patch(
|
||||
"openai.resources.chat.completions.Completions.create",
|
||||
return_value=_openai_chat_completion_response,
|
||||
)
|
||||
|
||||
result = mock_simple_linear_pipeline.run(value="abc")
|
||||
result = mock_simple_linear_pipeline(value="abc")
|
||||
|
||||
assert result.text == "123"
|
||||
assert openai_mocker.call_count == 1
|
||||
@@ -74,11 +100,12 @@ def test_simple_linear_pipeline_run(mocker, mock_simple_linear_pipeline):
|
||||
def test_gated_linear_pipeline_run_positive(
|
||||
mocker, mock_gated_linear_pipeline_positive
|
||||
):
|
||||
openai_mocker = mocker.patch.object(
|
||||
AzureChatOpenAI, "run", return_value="This is a test 123."
|
||||
openai_mocker = mocker.patch(
|
||||
"openai.resources.chat.completions.Completions.create",
|
||||
return_value=_openai_chat_completion_response,
|
||||
)
|
||||
|
||||
result = mock_gated_linear_pipeline_positive.run(
|
||||
result = mock_gated_linear_pipeline_positive(
|
||||
value="abc", condition_text="positive condition"
|
||||
)
|
||||
|
||||
@@ -89,11 +116,12 @@ def test_gated_linear_pipeline_run_positive(
|
||||
def test_gated_linear_pipeline_run_negative(
|
||||
mocker, mock_gated_linear_pipeline_positive
|
||||
):
|
||||
openai_mocker = mocker.patch.object(
|
||||
AzureChatOpenAI, "run", return_value="This is a test 123."
|
||||
openai_mocker = mocker.patch(
|
||||
"openai.resources.chat.completions.Completions.create",
|
||||
return_value=_openai_chat_completion_response,
|
||||
)
|
||||
|
||||
result = mock_gated_linear_pipeline_positive.run(
|
||||
result = mock_gated_linear_pipeline_positive(
|
||||
value="abc", condition_text="negative condition"
|
||||
)
|
||||
|
||||
@@ -102,14 +130,14 @@ def test_gated_linear_pipeline_run_negative(
|
||||
|
||||
|
||||
def test_simple_branching_pipeline_run(mocker, mock_simple_linear_pipeline):
|
||||
openai_mocker = mocker.patch.object(
|
||||
AzureChatOpenAI,
|
||||
"run",
|
||||
side_effect=[
|
||||
"This is a test 123.",
|
||||
"a quick brown fox",
|
||||
"jumps over the lazy dog 456",
|
||||
],
|
||||
response0: ChatCompletion = _openai_chat_completion_response
|
||||
response1: ChatCompletion = deepcopy(_openai_chat_completion_response)
|
||||
response1.choices[0].message.content = "a quick brown fox"
|
||||
response2: ChatCompletion = deepcopy(_openai_chat_completion_response)
|
||||
response2.choices[0].message.content = "jumps over the lazy dog 456"
|
||||
openai_mocker = mocker.patch(
|
||||
"openai.resources.chat.completions.Completions.create",
|
||||
side_effect=[response0, response1, response2],
|
||||
)
|
||||
pipeline = SimpleBranchingPipeline()
|
||||
for _ in range(3):
|
||||
@@ -126,8 +154,11 @@ def test_simple_branching_pipeline_run(mocker, mock_simple_linear_pipeline):
|
||||
def test_simple_gated_branching_pipeline_run(
|
||||
mocker, mock_gated_linear_pipeline_positive, mock_gated_linear_pipeline_negative
|
||||
):
|
||||
openai_mocker = mocker.patch.object(
|
||||
AzureChatOpenAI, "run", return_value="a quick brown fox"
|
||||
response0: ChatCompletion = deepcopy(_openai_chat_completion_response)
|
||||
response0.choices[0].message.content = "a quick brown fox"
|
||||
openai_mocker = mocker.patch(
|
||||
"openai.resources.chat.completions.Completions.create",
|
||||
return_value=response0,
|
||||
)
|
||||
pipeline = GatedBranchingPipeline()
|
||||
|
||||
|
@@ -26,7 +26,8 @@ def test_azureopenai_embeddings_raw(openai_embedding_call):
|
||||
)
|
||||
output = model("Hello world")
|
||||
assert isinstance(output, list)
|
||||
assert isinstance(output[0], float)
|
||||
assert isinstance(output[0], list)
|
||||
assert isinstance(output[0][0], float)
|
||||
openai_embedding_call.assert_called()
|
||||
|
||||
|
||||
@@ -53,8 +54,8 @@ def test_azureopenai_embeddings_batch_raw(openai_embedding_call):
|
||||
side_effect=lambda *args, **kwargs: None,
|
||||
)
|
||||
@patch(
|
||||
"langchain.embeddings.huggingface.HuggingFaceBgeEmbeddings.embed_query",
|
||||
side_effect=lambda *args, **kwargs: [1.0, 2.1, 3.2],
|
||||
"langchain.embeddings.huggingface.HuggingFaceBgeEmbeddings.embed_documents",
|
||||
side_effect=lambda *args, **kwargs: [[1.0, 2.1, 3.2]],
|
||||
)
|
||||
def test_huggingface_embddings(
|
||||
langchain_huggingface_embedding_call, sentence_transformers_init
|
||||
@@ -67,21 +68,23 @@ def test_huggingface_embddings(
|
||||
|
||||
output = model("Hello World")
|
||||
assert isinstance(output, list)
|
||||
assert isinstance(output[0], float)
|
||||
assert isinstance(output[0], list)
|
||||
assert isinstance(output[0][0], float)
|
||||
sentence_transformers_init.assert_called()
|
||||
langchain_huggingface_embedding_call.assert_called()
|
||||
|
||||
|
||||
@patch(
|
||||
"langchain.embeddings.cohere.CohereEmbeddings.embed_query",
|
||||
side_effect=lambda *args, **kwargs: [1.0, 2.1, 3.2],
|
||||
"langchain.embeddings.cohere.CohereEmbeddings.embed_documents",
|
||||
side_effect=lambda *args, **kwargs: [[1.0, 2.1, 3.2]],
|
||||
)
|
||||
def test_cohere_embddings(langchain_cohere_embedding_call):
|
||||
def test_cohere_embeddings(langchain_cohere_embedding_call):
|
||||
model = CohereEmbdeddings(
|
||||
model="embed-english-light-v2.0", cohere_api_key="my-api-key"
|
||||
)
|
||||
|
||||
output = model("Hello World")
|
||||
assert isinstance(output, list)
|
||||
assert isinstance(output[0], float)
|
||||
assert isinstance(output[0], list)
|
||||
assert isinstance(output[0][0], float)
|
||||
langchain_cohere_embedding_call.assert_called()
|
||||
|
@@ -60,7 +60,8 @@ def test_retrieving(mock_openai_embedding, tmp_path):
|
||||
)
|
||||
|
||||
index_pipeline(text=Document(text="Hello world"))
|
||||
output = retrieval_pipeline(text=["Hello world", "Hello world"])
|
||||
output = retrieval_pipeline(text="Hello world")
|
||||
output1 = retrieval_pipeline(text="Hello world")
|
||||
|
||||
assert len(output) == 2, "Expect 2 results"
|
||||
assert output[0] == output[1], "Expect identical results"
|
||||
assert len(output) == 1, "Expect 1 results"
|
||||
assert output == output1, "Expect identical results"
|
||||
|
@@ -54,12 +54,6 @@ def test_azureopenai_model(openai_completion):
|
||||
), "Output for single text is not LLMInterface"
|
||||
openai_completion.assert_called()
|
||||
|
||||
# test for list[str] input - batch mode
|
||||
output = model(["hello world"])
|
||||
assert isinstance(output, list), "Output for batch string is not a list"
|
||||
assert isinstance(output[0], LLMInterface), "Output for text is not LLMInterface"
|
||||
openai_completion.assert_called()
|
||||
|
||||
# test for list[message] input - stream mode
|
||||
messages = [
|
||||
SystemMessage(content="You are a philosohper"),
|
||||
@@ -73,9 +67,3 @@ def test_azureopenai_model(openai_completion):
|
||||
output, LLMInterface
|
||||
), "Output for single text is not LLMInterface"
|
||||
openai_completion.assert_called()
|
||||
|
||||
# test for list[list[message]] input - batch mode
|
||||
output = model([messages])
|
||||
assert isinstance(output, list), "Output for batch string is not a list"
|
||||
assert isinstance(output[0], LLMInterface), "Output for text is not LLMInterface"
|
||||
openai_completion.assert_called()
|
||||
|
@@ -44,11 +44,6 @@ def test_azureopenai_model(openai_completion):
|
||||
model.agent, AzureOpenAILC
|
||||
), "Agent not wrapped in Langchain's AzureOpenAI"
|
||||
|
||||
output = model(["hello world"])
|
||||
assert isinstance(output, list), "Output for batch is not a list"
|
||||
assert isinstance(output[0], LLMInterface), "Output for text is not LLMInterface"
|
||||
openai_completion.assert_called()
|
||||
|
||||
output = model("hello world")
|
||||
assert isinstance(
|
||||
output, LLMInterface
|
||||
@@ -72,11 +67,6 @@ def test_openai_model(openai_completion):
|
||||
model.agent, OpenAILC
|
||||
), "Agent is not wrapped in Langchain's OpenAI"
|
||||
|
||||
output = model(["hello world"])
|
||||
assert isinstance(output, list), "Output for batch is not a list"
|
||||
assert isinstance(output[0], LLMInterface), "Output for text is not LLMInterface"
|
||||
openai_completion.assert_called()
|
||||
|
||||
output = model("hello world")
|
||||
assert isinstance(
|
||||
output, LLMInterface
|
||||
|
@@ -13,23 +13,13 @@ def regex_extractor():
|
||||
|
||||
def test_run_document(regex_extractor):
|
||||
document = Document(text="This is a test. 1 2 3")
|
||||
extracted_document = regex_extractor(document)
|
||||
extracted_document = regex_extractor(document)[0]
|
||||
assert extracted_document.text == "One"
|
||||
assert extracted_document.matches == ["One", "Two", "Three"]
|
||||
|
||||
|
||||
def test_is_document(regex_extractor):
|
||||
assert regex_extractor.is_document(Document(text="Test"))
|
||||
assert not regex_extractor.is_document("Test")
|
||||
|
||||
|
||||
def test_is_batch(regex_extractor):
|
||||
assert regex_extractor.is_batch([Document(text="Test")])
|
||||
assert not regex_extractor.is_batch(Document(text="Test"))
|
||||
|
||||
|
||||
def test_run_raw(regex_extractor):
|
||||
output = regex_extractor("This is a test. 123")
|
||||
output = regex_extractor("This is a test. 123")[0]
|
||||
assert output.text == "123"
|
||||
assert output.matches == ["123"]
|
||||
|
||||
|
@@ -54,7 +54,7 @@ def test_run():
|
||||
|
||||
result = prompt()
|
||||
|
||||
assert result.text == "str = Alice, int = 30, doc = Helloo, Alice!, comp = One"
|
||||
assert result.text == "str = Alice, int = 30, doc = Helloo, Alice!, comp = ['One']"
|
||||
|
||||
|
||||
def test_set_method():
|
||||
|
Reference in New Issue
Block a user