Simplify the BaseComponent inteface (#64)

This change remove `BaseComponent`'s:

- run_raw
- run_batch_raw
- run_document
- run_batch_document
- is_document
- is_batch

Each component is expected to support multiple types of inputs and a single type of output. Since we want the component to work out-of-the-box with both standardized and customized use cases, supporting multiple types of inputs are expected. At the same time, to reduce the complexity of understanding how to use a component, we restrict a component to only have a single output type.

To accommodate these changes, we also refactor some components to remove their run_raw, run_batch_raw... methods, and to decide the common output interface for those components.

Tests are updated accordingly.

Commit changes:

* Add kwargs to vector store's query
* Simplify the BaseComponent
* Update tests
* Remove support for Python 3.8 and 3.9
* Bump version 0.3.0
* Fix github PR caching still use old environment after bumping version

---------

Co-authored-by: ian <ian@cinnamon.is>
This commit is contained in:
Nguyen Trung Duc (john)
2023-11-13 15:10:18 +07:00
committed by GitHub
parent 6095526dc7
commit d79b3744cb
25 changed files with 280 additions and 458 deletions

View File

@@ -22,4 +22,4 @@ try:
except ImportError:
pass
__version__ = "0.2.0"
__version__ = "0.3.0"

View File

@@ -1,70 +0,0 @@
from abc import abstractmethod
from theflow.base import Compose
class BaseComponent(Compose):
"""Base class for component
A component is a class that can be used to compose a pipeline. To use the
component, you should implement the following methods:
- run_raw: run on raw input
- run_batch_raw: run on batch of raw input
- run_document: run on document
- run_batch_document: run on batch of documents
- is_document: check if input is document
- is_batch: check if input is batch
"""
inflow = None
def flow(self):
if self.inflow is None:
raise ValueError("No inflow provided.")
if not isinstance(self.inflow, BaseComponent):
raise ValueError(
f"inflow must be a BaseComponent, found {type(self.inflow)}"
)
return self.__call__(self.inflow.flow())
@abstractmethod
def run_raw(self, *args, **kwargs):
...
@abstractmethod
def run_batch_raw(self, *args, **kwargs):
...
@abstractmethod
def run_document(self, *args, **kwargs):
...
@abstractmethod
def run_batch_document(self, *args, **kwargs):
...
@abstractmethod
def is_document(self, *args, **kwargs) -> bool:
...
@abstractmethod
def is_batch(self, *args, **kwargs) -> bool:
...
def run(self, *args, **kwargs):
"""Run the component."""
is_document = self.is_document(*args, **kwargs)
is_batch = self.is_batch(*args, **kwargs)
if is_document and is_batch:
return self.run_batch_document(*args, **kwargs)
elif is_document and not is_batch:
return self.run_document(*args, **kwargs)
elif not is_document and is_batch:
return self.run_batch_raw(*args, **kwargs)
else:
return self.run_raw(*args, **kwargs)

View File

@@ -0,0 +1,3 @@
from .component import BaseComponent
__all__ = ["BaseComponent"]

View File

@@ -0,0 +1,35 @@
from abc import abstractmethod
from theflow.base import Compose
class BaseComponent(Compose):
"""A component is a class that can be used to compose a pipeline
Benefits of component:
- Auto caching, logging
- Allow deployment
For each component, the spirit is:
- Tolerate multiple input types, e.g. str, Document, List[str], List[Document]
- Enforce single output type. Hence, the output type of a component should be
as generic as possible.
"""
inflow = None
def flow(self):
if self.inflow is None:
raise ValueError("No inflow provided.")
if not isinstance(self.inflow, BaseComponent):
raise ValueError(
f"inflow must be a BaseComponent, found {type(self.inflow)}"
)
return self.__call__(self.inflow.flow())
@abstractmethod
def run(self, *args, **kwargs):
"""Run the component."""
...

View File

@@ -70,7 +70,7 @@ class SimpleLinearPipeline(BaseComponent):
prompt = self.prompt(**prompt_kwargs)
llm_output = self.llm(prompt.text, **llm_kwargs)
if self.post_processor is not None:
final_output = self.post_processor(llm_output, **post_processor_kwargs)
final_output = self.post_processor(llm_output, **post_processor_kwargs)[0]
else:
final_output = llm_output
@@ -143,7 +143,7 @@ class GatedLinearPipeline(SimpleLinearPipeline):
if condition_text is None:
raise ValueError("`condition_text` must be provided")
if self.condition(condition_text):
if self.condition(condition_text)[0]:
return super().run(
llm_kwargs=llm_kwargs,
post_processor_kwargs=post_processor_kwargs,

View File

View File

@@ -1,5 +1,7 @@
from __future__ import annotations
from abc import abstractmethod
from typing import List, Type
from typing import Type
from langchain.schema.embeddings import Embeddings as LCEmbeddings
from theflow import Param
@@ -10,33 +12,11 @@ from ..documents.base import Document
class BaseEmbeddings(BaseComponent):
@abstractmethod
def run_raw(self, text: str) -> List[float]:
def run(
self, text: str | list[str] | Document | list[Document]
) -> list[list[float]]:
...
@abstractmethod
def run_batch_raw(self, text: List[str]) -> List[List[float]]:
...
@abstractmethod
def run_document(self, text: Document) -> List[float]:
...
@abstractmethod
def run_batch_document(self, text: List[Document]) -> List[List[float]]:
...
def is_document(self, text) -> bool:
if isinstance(text, Document):
return True
elif isinstance(text, List) and isinstance(text[0], Document):
return True
return False
def is_batch(self, text) -> bool:
if isinstance(text, list):
return True
return False
class LangchainEmbeddings(BaseEmbeddings):
_lc_class: Type[LCEmbeddings]
@@ -64,14 +44,19 @@ class LangchainEmbeddings(BaseEmbeddings):
def agent(self):
return self._lc_class(**self._kwargs)
def run_raw(self, text: str) -> List[float]:
return self.agent.embed_query(text) # type: ignore
def run(self, text) -> list[list[float]]:
input_: list[str] = []
if not isinstance(text, list):
text = [text]
def run_batch_raw(self, text: List[str]) -> List[List[float]]:
return self.agent.embed_documents(text) # type: ignore
for item in text:
if isinstance(item, str):
input_.append(item)
elif isinstance(item, Document):
input_.append(item.text)
else:
raise ValueError(
f"Invalid input type {type(item)}, should be str or Document"
)
def run_document(self, text: Document) -> List[float]:
return self.agent.embed_query(text.text) # type: ignore
def run_batch_document(self, text: List[Document]) -> List[List[float]]:
return self.agent.embed_documents([each.text for each in text]) # type: ignore
return self.agent.embed_documents(input_)

View File

@@ -1,13 +1,16 @@
from typing import List, Type, TypeVar
from __future__ import annotations
from langchain.schema.language_model import BaseLanguageModel
import logging
from typing import Type
from langchain.chat_models.base import BaseChatModel
from langchain.schema.messages import BaseMessage, HumanMessage
from theflow.base import Param
from ...base import BaseComponent
from ..base import LLMInterface
Message = TypeVar("Message", bound=BaseMessage)
logger = logging.getLogger(__name__)
class ChatLLM(BaseComponent):
@@ -25,7 +28,7 @@ class ChatLLM(BaseComponent):
class LangchainChatLLM(ChatLLM):
_lc_class: Type[BaseLanguageModel]
_lc_class: Type[BaseChatModel]
def __init__(self, **params):
if self._lc_class is None:
@@ -41,60 +44,62 @@ class LangchainChatLLM(ChatLLM):
super().__init__(**params)
@Param.auto(cache=False)
def agent(self) -> BaseLanguageModel:
def agent(self) -> BaseChatModel:
return self._lc_class(**self._kwargs)
def run_raw(self, text: str, **kwargs) -> LLMInterface:
message = HumanMessage(content=text)
return self.run_document([message], **kwargs)
def run(
self, messages: str | BaseMessage | list[BaseMessage], **kwargs
) -> LLMInterface:
"""Generate response from messages
def run_batch_raw(self, text: List[str], **kwargs) -> List[LLMInterface]:
inputs = [[HumanMessage(content=each)] for each in text]
return self.run_batch_document(inputs, **kwargs)
Args:
messages: history of messages to generate response from
**kwargs: additional arguments to pass to the langchain chat model
def run_document(self, text: List[Message], **kwargs) -> LLMInterface:
pred = self.agent.generate([text], **kwargs) # type: ignore
Returns:
LLMInterface: generated response
"""
input_: list[BaseMessage] = []
if isinstance(messages, str):
input_ = [HumanMessage(content=messages)]
elif isinstance(messages, BaseMessage):
input_ = [messages]
else:
input_ = messages
pred = self.agent.generate(messages=[input_], **kwargs)
all_text = [each.text for each in pred.generations[0]]
completion_tokens, total_tokens, prompt_tokens = 0, 0, 0
try:
if pred.llm_output is not None:
completion_tokens = pred.llm_output["token_usage"]["completion_tokens"]
total_tokens = pred.llm_output["token_usage"]["total_tokens"]
prompt_tokens = pred.llm_output["token_usage"]["prompt_tokens"]
except Exception:
logger.warning(
f"Cannot get token usage from LLM output for {self._lc_class.__name__}"
)
return LLMInterface(
text=all_text[0] if len(all_text) > 0 else "",
candidates=all_text,
completion_tokens=pred.llm_output["token_usage"]["completion_tokens"],
total_tokens=pred.llm_output["token_usage"]["total_tokens"],
prompt_tokens=pred.llm_output["token_usage"]["prompt_tokens"],
completion_tokens=completion_tokens,
total_tokens=total_tokens,
prompt_tokens=prompt_tokens,
logits=[],
)
def run_batch_document(
self, text: List[List[Message]], **kwargs
) -> List[LLMInterface]:
outputs = []
for each_text in text:
outputs.append(self.run_document(each_text, **kwargs))
return outputs
def is_document(self, text, **kwargs) -> bool:
if isinstance(text, str):
return False
elif isinstance(text, List) and isinstance(text[0], str):
return False
return True
def is_batch(self, text, **kwargs) -> bool:
if isinstance(text, str):
return False
elif isinstance(text, List):
if isinstance(text[0], BaseMessage):
return False
return True
def __setattr__(self, name, value):
if name in self._lc_class.__fields__:
self._kwargs[name] = value
setattr(self.agent, name, value)
else:
super().__setattr__(name, value)
def __getattr__(self, name):
if name in self._lc_class.__fields__:
getattr(self.agent, name)
else:
super().__getattr__(name)
return getattr(self.agent, name)
return super().__getattr__(name) # type: ignore

View File

@@ -1,18 +1,21 @@
from typing import List, Type
import logging
from typing import Type
from langchain.schema.language_model import BaseLanguageModel
from langchain.llms.base import BaseLLM
from theflow.base import Param
from ...base import BaseComponent
from ..base import LLMInterface
logger = logging.getLogger(__name__)
class LLM(BaseComponent):
pass
class LangchainLLM(LLM):
_lc_class: Type[BaseLanguageModel]
_lc_class: Type[BaseLLM]
def __init__(self, **params):
if self._lc_class is None:
@@ -31,38 +34,33 @@ class LangchainLLM(LLM):
def agent(self):
return self._lc_class(**self._kwargs)
def run_raw(self, text: str) -> LLMInterface:
def run(self, text: str) -> LLMInterface:
pred = self.agent.generate([text])
all_text = [each.text for each in pred.generations[0]]
completion_tokens, total_tokens, prompt_tokens = 0, 0, 0
try:
if pred.llm_output is not None:
completion_tokens = pred.llm_output["token_usage"]["completion_tokens"]
total_tokens = pred.llm_output["token_usage"]["total_tokens"]
prompt_tokens = pred.llm_output["token_usage"]["prompt_tokens"]
except Exception:
logger.warning(
f"Cannot get token usage from LLM output for {self._lc_class.__name__}"
)
return LLMInterface(
text=all_text[0] if len(all_text) > 0 else "",
candidates=all_text,
completion_tokens=pred.llm_output["token_usage"]["completion_tokens"],
total_tokens=pred.llm_output["token_usage"]["total_tokens"],
prompt_tokens=pred.llm_output["token_usage"]["prompt_tokens"],
completion_tokens=completion_tokens,
total_tokens=total_tokens,
prompt_tokens=prompt_tokens,
logits=[],
)
def run_batch_raw(self, text: List[str]) -> List[LLMInterface]:
outputs = []
for each_text in text:
outputs.append(self.run_raw(each_text))
return outputs
def run_document(self, text: str) -> LLMInterface:
return self.run_raw(text)
def run_batch_document(self, text: List[str]) -> List[LLMInterface]:
return self.run_batch_raw(text)
def is_document(self, text) -> bool:
return False
def is_batch(self, text) -> bool:
return False if isinstance(text, str) else True
def __setattr__(self, name, value):
if name in self._lc_class.__fields__:
self._kwargs[name] = value
setattr(self.agent, name, value)
else:
super().__setattr__(name, value)

View File

@@ -1,6 +1,7 @@
from __future__ import annotations
import uuid
from pathlib import Path
from typing import List, Union
from theflow import Node, Param
@@ -26,44 +27,34 @@ class IndexVectorStoreFromDocumentPipeline(BaseComponent):
vector_store: Param[BaseVectorStore] = Param()
doc_store: Param[BaseDocumentStore] = Param()
embedding: Node[BaseEmbeddings] = Node()
# TODO: refer to llama_index's storage as well
def run_raw(self, text: str) -> None:
document = Document(text=text, id_=str(uuid.uuid4()))
self.run_batch_document([document])
def run(self, text: str | list[str] | Document | list[Document]) -> None:
input_: list[Document] = []
if not isinstance(text, list):
text = [text]
def run_batch_raw(self, text: List[str]) -> None:
documents = [Document(text=t, id_=str(uuid.uuid4())) for t in text]
self.run_batch_document(documents)
for item in text:
if isinstance(item, str):
input_.append(Document(text=item, id_=str(uuid.uuid4())))
elif isinstance(item, Document):
input_.append(item)
else:
raise ValueError(
f"Invalid input type {type(item)}, should be str or Document"
)
def run_document(self, text: Document) -> None:
self.run_batch_document([text])
def run_batch_document(self, text: List[Document]) -> None:
embeddings = self.embedding(text)
embeddings = self.embedding(input_)
self.vector_store.add(
embeddings=embeddings,
ids=[t.id_ for t in text],
ids=[t.id_ for t in input_],
)
if self.doc_store:
self.doc_store.add(text)
def is_document(self, text) -> bool:
if isinstance(text, Document):
return True
elif isinstance(text, List) and isinstance(text[0], Document):
return True
return False
def is_batch(self, text) -> bool:
if isinstance(text, list):
return True
return False
self.doc_store.add(input_)
def save(
self,
path: Union[str, Path],
path: str | Path,
vectorstore_fname: str = VECTOR_STORE_FNAME,
docstore_fname: str = DOC_STORE_FNAME,
):
@@ -80,7 +71,7 @@ class IndexVectorStoreFromDocumentPipeline(BaseComponent):
def load(
self,
path: Union[str, Path],
path: str | Path,
vectorstore_fname: str = VECTOR_STORE_FNAME,
docstore_fname: str = DOC_STORE_FNAME,
):

View File

@@ -1,6 +1,6 @@
from abc import abstractmethod
from __future__ import annotations
from pathlib import Path
from typing import List, Union
from theflow import Node, Param
@@ -14,31 +14,7 @@ VECTOR_STORE_FNAME = "vectorstore"
DOC_STORE_FNAME = "docstore"
class BaseRetrieval(BaseComponent):
"""Define the base interface of a retrieval pipeline"""
@abstractmethod
def run_raw(self, text: str, top_k: int = 1) -> List[RetrievedDocument]:
...
@abstractmethod
def run_batch_raw(
self, text: List[str], top_k: int = 1
) -> List[List[RetrievedDocument]]:
...
@abstractmethod
def run_document(self, text: Document, top_k: int = 1) -> List[RetrievedDocument]:
...
@abstractmethod
def run_batch_document(
self, text: List[Document], top_k: int = 1
) -> List[List[RetrievedDocument]]:
...
class RetrieveDocumentFromVectorStorePipeline(BaseRetrieval):
class RetrieveDocumentFromVectorStorePipeline(BaseComponent):
"""Retrieve list of documents from vector store"""
vector_store: Param[BaseVectorStore] = Param()
@@ -46,53 +22,33 @@ class RetrieveDocumentFromVectorStorePipeline(BaseRetrieval):
embedding: Node[BaseEmbeddings] = Node()
# TODO: refer to llama_index's storage as well
def run_raw(self, text: str, top_k: int = 1) -> List[RetrievedDocument]:
return self.run_batch_raw([text], top_k=top_k)[0]
def run(self, text: str | Document, top_k: int = 1) -> list[RetrievedDocument]:
"""Retrieve a list of documents from vector store
def run_batch_raw(
self, text: List[str], top_k: int = 1
) -> List[List[RetrievedDocument]]:
Args:
text: the text to retrieve similar documents
Returns:
list[RetrievedDocument]: list of retrieved documents
"""
if self.doc_store is None:
raise ValueError(
"doc_store is not provided. Please provide a doc_store to "
"retrieve the documents"
)
result = []
for each_text in text:
emb = self.embedding(each_text)
_, scores, ids = self.vector_store.query(embedding=emb, top_k=top_k)
docs = self.doc_store.get(ids)
each_result = [
RetrievedDocument(**doc.to_dict(), score=score)
for doc, score in zip(docs, scores)
]
result.append(each_result)
emb: list[float] = self.embedding(text)[0]
_, scores, ids = self.vector_store.query(embedding=emb, top_k=top_k)
docs = self.doc_store.get(ids)
result = [
RetrievedDocument(**doc.to_dict(), score=score)
for doc, score in zip(docs, scores)
]
return result
def run_document(self, text: Document, top_k: int = 1) -> List[RetrievedDocument]:
return self.run_raw(text.text, top_k)
def run_batch_document(
self, text: List[Document], top_k: int = 1
) -> List[List[RetrievedDocument]]:
return self.run_batch_raw(text=[t.text for t in text], top_k=top_k)
def is_document(self, text, *args, **kwargs) -> bool:
if isinstance(text, Document):
return True
elif isinstance(text, List) and isinstance(text[0], Document):
return True
return False
def is_batch(self, text, *args, **kwargs) -> bool:
if isinstance(text, list):
return True
return False
def save(
self,
path: Union[str, Path],
path: str | Path,
vectorstore_fname: str = VECTOR_STORE_FNAME,
docstore_fname: str = DOC_STORE_FNAME,
):
@@ -109,7 +65,7 @@ class RetrieveDocumentFromVectorStorePipeline(BaseRetrieval):
def load(
self,
path: Union[str, Path],
path: str | Path,
vectorstore_fname: str = VECTOR_STORE_FNAME,
docstore_fname: str = DOC_STORE_FNAME,
):

View File

@@ -92,7 +92,7 @@ class BaseTool(BaseComponent):
"""Convert this tool to Langchain format to use with its agent"""
return LCTool(name=self.name, description=self.description, func=self.run)
def run_raw(
def run(
self,
tool_input: Union[str, Dict],
verbose: Optional[bool] = None,
@@ -110,23 +110,6 @@ class BaseTool(BaseComponent):
else:
return observation
def run_document(self, *args, **kwargs):
pass
def run_batch_raw(self, *args, **kwargs):
pass
def run_batch_document(self, *args, **kwargs):
pass
def is_document(self, *args, **kwargs) -> bool:
"""Tool does not support processing document"""
return False
def is_batch(self, *args, **kwargs) -> bool:
"""Tool does not support processing batch"""
return False
@classmethod
def from_langchain_format(cls, langchain_tool: LCTool) -> "BaseTool":
"""Wrapper for Langchain Tool"""

View File

@@ -1,5 +1,7 @@
from __future__ import annotations
import re
from typing import Callable, Dict, List, Union
from typing import Callable
from theflow import Param
@@ -12,7 +14,7 @@ class ExtractorOutput(Document):
Represents the output of an extractor.
"""
matches: List[str]
matches: list[str]
class RegexExtractor(BaseComponent):
@@ -28,18 +30,18 @@ class RegexExtractor(BaseComponent):
class Config:
middleware_switches = {"theflow.middleware.CachingMiddleware": False}
pattern: List[str]
output_map: Union[Dict[str, str], Callable[[str], str]] = Param(
pattern: list[str]
output_map: dict[str, str] | Callable[[str], str] = Param(
default_callback=lambda *_: {}
)
def __init__(self, pattern: Union[str, List[str]], **kwargs):
def __init__(self, pattern: str | list[str], **kwargs):
if isinstance(pattern, str):
pattern = [pattern]
super().__init__(pattern=pattern, **kwargs)
@staticmethod
def run_raw_static(pattern: str, text: str) -> List[str]:
def run_raw_static(pattern: str, text: str) -> list[str]:
"""
Finds all non-overlapping occurrences of a pattern in a string.
@@ -86,9 +88,9 @@ class RegexExtractor(BaseComponent):
Returns:
ExtractorOutput: The processed output as a list of ExtractorOutput.
"""
output = sum(
output: list[str] = sum(
[self.run_raw_static(p, text) for p in self.pattern], []
) # type: List[str]
)
output = [self.map_output(text, self.output_map) for text in output]
return ExtractorOutput(
@@ -97,100 +99,48 @@ class RegexExtractor(BaseComponent):
metadata={"origin": "RegexExtractor"},
)
def run_batch_raw(self, text_batch: List[str]) -> List[ExtractorOutput]:
"""
Runs a batch of raw text inputs through the `run_raw()` method and returns the
output for each input.
def run(
self, text: str | list[str] | Document | list[Document]
) -> list[ExtractorOutput]:
"""Match the input against a pattern and return the output for each input
Parameters:
text_batch (List[str]): A list of raw text inputs to process.
text: contains the input string to be processed
Returns:
List[ExtractorOutput]: A list containing the output for each input in the
batch.
"""
batch_output = [self.run_raw(each_text) for each_text in text_batch]
return batch_output
def run_document(self, document: Document) -> ExtractorOutput:
"""
Run the document through the regex extractor and return an extracted document.
Args:
document (Document): The input document.
Returns:
ExtractorOutput: The extracted content.
"""
return self.run_raw(document.text)
def run_batch_document(
self, document_batch: List[Document]
) -> List[ExtractorOutput]:
"""
Runs a batch of documents through the `run_document` function and returns the
output for each document.
Parameters:
document_batch (List[Document]): A list of Document objects representing the
batch of documents to process.
Returns:
List[ExtractorOutput]: A list contains the output ExtractorOutput for each
input Document in the batch.
A list contains the output ExtractorOutput for each input
Example:
document1 = Document(...)
document2 = Document(...)
document_batch = [document1, document2]
batch_output = self.run_batch_document(document_batch)
batch_output = self(document_batch)
# batch_output will be [output1_document1, output1_document2]
"""
# TODO: this conversion seems common
input_: list[str] = []
if not isinstance(text, list):
text = [text]
batch_output = [
self.run_document(each_document) for each_document in document_batch
]
for item in text:
if isinstance(item, str):
input_.append(item)
elif isinstance(item, Document):
input_.append(item.text)
else:
raise ValueError(
f"Invalid input type {type(item)}, should be str or Document"
)
return batch_output
output = []
for each_input in input_:
output.append(self.run_raw(each_input))
def is_document(self, text) -> bool:
"""
Check if the given text is an instance of the Document class.
Args:
text: The text to check.
Returns:
bool: True if the text is an instance of Document, False otherwise.
"""
if isinstance(text, Document):
return True
return False
def is_batch(self, text) -> bool:
"""
Check if the given text is a batch of documents.
Parameters:
text (List): The text to be checked.
Returns:
bool: True if the text is a batch of documents, False otherwise.
"""
if not isinstance(text, List):
return False
if len(set(self.is_document(each_text) for each_text in text)) <= 1:
return True
return False
return output
class FirstMatchRegexExtractor(RegexExtractor):
pattern: List[str]
pattern: list[str]
def run_raw(self, text: str) -> ExtractorOutput:
for p in self.pattern:

View File

@@ -174,23 +174,5 @@ class BasePromptComponent(BaseComponent):
text = self.template.populate(**prepared_kwargs)
return Document(text=text, metadata={"origin": "PromptComponent"})
def run_raw(self, *args, **kwargs):
pass
def run_batch_raw(self, *args, **kwargs):
pass
def run_document(self, *args, **kwargs):
pass
def run_batch_document(self, *args, **kwargs):
pass
def is_document(self, *args, **kwargs):
pass
def is_batch(self, *args, **kwargs):
pass
def flow(self):
return self.__call__()

View File

View File

@@ -59,6 +59,7 @@ class BaseVectorStore(ABC):
embedding: List[float],
top_k: int = 1,
ids: Optional[List[str]] = None,
**kwargs,
) -> Tuple[List[List[float]], List[float], List[str]]:
"""Return the top k most similar vector embeddings