[AUR-338, AUR-406, AUR-407] Export pipeline to config for PromptUI. Construct PromptUI dynamically based on config. (#16)
From pipeline > config > UI. Provide example project for promptui - Pipeline to config: `kotaemon.contribs.promptui.config.export_pipeline_to_config`. The config follows schema specified in this document: https://cinnamon-ai.atlassian.net/wiki/spaces/ATM/pages/2748711193/Technical+Detail. Note: this implementation exclude the logs, which will be handled in AUR-408. - Config to UI: `kotaemon.contribs.promptui.build_from_yaml` - Example project is located at `examples/promptui/`
This commit is contained in:
committed by
GitHub
parent
c329c4c03f
commit
c6dd01e820
86
tests/test_promptui.py
Normal file
86
tests/test_promptui.py
Normal file
@@ -0,0 +1,86 @@
|
||||
import pytest
|
||||
|
||||
from kotaemon.contribs.promptui.config import export_pipeline_to_config
|
||||
from kotaemon.contribs.promptui.ui import build_from_dict
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
def simple_pipeline_cls(tmp_path):
|
||||
"""Create a pipeline class that can be used"""
|
||||
from typing import List
|
||||
|
||||
from theflow import Node
|
||||
|
||||
from kotaemon.base import BaseComponent
|
||||
from kotaemon.embeddings import AzureOpenAIEmbeddings
|
||||
from kotaemon.llms.completions.openai import AzureOpenAI
|
||||
from kotaemon.pipelines.retrieving import (
|
||||
RetrieveDocumentFromVectorStorePipeline,
|
||||
)
|
||||
from kotaemon.vectorstores import ChromaVectorStore
|
||||
|
||||
class Pipeline(BaseComponent):
|
||||
vectorstore_path: str = str(tmp_path)
|
||||
llm: Node[AzureOpenAI] = Node(
|
||||
default=AzureOpenAI,
|
||||
default_kwargs={
|
||||
"openai_api_base": "https://test.openai.azure.com/",
|
||||
"openai_api_key": "some-key",
|
||||
"openai_api_version": "2023-03-15-preview",
|
||||
"deployment_name": "gpt35turbo",
|
||||
"temperature": 0,
|
||||
"request_timeout": 60,
|
||||
},
|
||||
)
|
||||
|
||||
@Node.decorate(depends_on=["vectorstore_path"])
|
||||
def retrieving_pipeline(self):
|
||||
vector_store = ChromaVectorStore(self.vectorstore_path)
|
||||
embedding = AzureOpenAIEmbeddings(
|
||||
model="text-embedding-ada-002",
|
||||
deployment="embedding-deployment",
|
||||
openai_api_base="https://test.openai.azure.com/",
|
||||
openai_api_key="some-key",
|
||||
)
|
||||
|
||||
return RetrieveDocumentFromVectorStorePipeline(
|
||||
vector_store=vector_store, embedding=embedding
|
||||
)
|
||||
|
||||
def run_raw(self, text: str) -> str:
|
||||
matched_texts: List[str] = self.retrieving_pipeline(text)
|
||||
return self.llm("\n".join(matched_texts)).text[0]
|
||||
|
||||
return Pipeline
|
||||
|
||||
|
||||
Pipeline = simple_pipeline_cls
|
||||
|
||||
|
||||
class TestPromptConfig:
|
||||
def test_export_prompt_config(self, simple_pipeline_cls):
|
||||
"""Test if the prompt config is exported correctly"""
|
||||
pipeline = simple_pipeline_cls()
|
||||
config_dict = export_pipeline_to_config(pipeline)
|
||||
config = list(config_dict.values())[0]
|
||||
|
||||
assert "inputs" in config, "inputs should be in config"
|
||||
assert "text" in config["inputs"], "inputs should have config"
|
||||
|
||||
assert "params" in config, "params should be in config"
|
||||
assert "vectorstore_path" in config["params"]
|
||||
assert "llm.deployment_name" in config["params"]
|
||||
assert "llm.openai_api_base" in config["params"]
|
||||
assert "llm.openai_api_key" in config["params"]
|
||||
assert "llm.openai_api_version" in config["params"]
|
||||
assert "llm.request_timeout" in config["params"]
|
||||
assert "llm.temperature" in config["params"]
|
||||
|
||||
|
||||
class TestPromptUI:
|
||||
def test_uigeneration(self, simple_pipeline_cls):
|
||||
"""Test if the gradio UI is exposed without any problem"""
|
||||
pipeline = simple_pipeline_cls()
|
||||
config = export_pipeline_to_config(pipeline)
|
||||
|
||||
build_from_dict(config)
|
Reference in New Issue
Block a user