[AUR-338, AUR-406, AUR-407] Export pipeline to config for PromptUI. Construct PromptUI dynamically based on config. (#16)
From pipeline > config > UI. Provide example project for promptui - Pipeline to config: `kotaemon.contribs.promptui.config.export_pipeline_to_config`. The config follows schema specified in this document: https://cinnamon-ai.atlassian.net/wiki/spaces/ATM/pages/2748711193/Technical+Detail. Note: this implementation exclude the logs, which will be handled in AUR-408. - Config to UI: `kotaemon.contribs.promptui.build_from_yaml` - Example project is located at `examples/promptui/`
This commit is contained in:
committed by
GitHub
parent
c329c4c03f
commit
c6dd01e820
@@ -1,9 +1,11 @@
|
||||
import json
|
||||
from pathlib import Path
|
||||
from typing import cast
|
||||
|
||||
import pytest
|
||||
from openai.api_resources.embedding import Embedding
|
||||
|
||||
from kotaemon.docstores import InMemoryDocumentStore
|
||||
from kotaemon.documents.base import Document
|
||||
from kotaemon.embeddings.openai import AzureOpenAIEmbeddings
|
||||
from kotaemon.pipelines.indexing import IndexVectorStoreFromDocumentPipeline
|
||||
@@ -21,6 +23,7 @@ def mock_openai_embedding(monkeypatch):
|
||||
|
||||
def test_indexing(mock_openai_embedding, tmp_path):
|
||||
db = ChromaVectorStore(path=str(tmp_path))
|
||||
doc_store = InMemoryDocumentStore()
|
||||
embedding = AzureOpenAIEmbeddings(
|
||||
model="text-embedding-ada-002",
|
||||
deployment="embedding-deployment",
|
||||
@@ -29,15 +32,19 @@ def test_indexing(mock_openai_embedding, tmp_path):
|
||||
)
|
||||
|
||||
pipeline = IndexVectorStoreFromDocumentPipeline(
|
||||
vector_store=db, embedding=embedding
|
||||
vector_store=db, embedding=embedding, doc_store=doc_store
|
||||
)
|
||||
pipeline.doc_store = cast(InMemoryDocumentStore, pipeline.doc_store)
|
||||
assert pipeline.vector_store._collection.count() == 0, "Expected empty collection"
|
||||
assert len(pipeline.doc_store._store) == 0, "Expected empty doc store"
|
||||
pipeline(text=Document(text="Hello world"))
|
||||
assert pipeline.vector_store._collection.count() == 1, "Index 1 item"
|
||||
assert len(pipeline.doc_store._store) == 1, "Expected 1 document"
|
||||
|
||||
|
||||
def test_retrieving(mock_openai_embedding, tmp_path):
|
||||
db = ChromaVectorStore(path=str(tmp_path))
|
||||
doc_store = InMemoryDocumentStore()
|
||||
embedding = AzureOpenAIEmbeddings(
|
||||
model="text-embedding-ada-002",
|
||||
deployment="embedding-deployment",
|
||||
@@ -46,14 +53,14 @@ def test_retrieving(mock_openai_embedding, tmp_path):
|
||||
)
|
||||
|
||||
index_pipeline = IndexVectorStoreFromDocumentPipeline(
|
||||
vector_store=db, embedding=embedding
|
||||
vector_store=db, embedding=embedding, doc_store=doc_store
|
||||
)
|
||||
retrieval_pipeline = RetrieveDocumentFromVectorStorePipeline(
|
||||
vector_store=db, embedding=embedding
|
||||
vector_store=db, doc_store=doc_store, embedding=embedding
|
||||
)
|
||||
|
||||
index_pipeline(text=Document(text="Hello world"))
|
||||
output = retrieval_pipeline(text=["Hello world", "Hello world"])
|
||||
|
||||
assert len(output) == 2, "Expected 2 results"
|
||||
assert output[0] == output[1], "Expected identical results"
|
||||
assert len(output) == 2, "Expect 2 results"
|
||||
assert output[0] == output[1], "Expect identical results"
|
||||
|
Reference in New Issue
Block a user