[AUR-338, AUR-406, AUR-407] Export pipeline to config for PromptUI. Construct PromptUI dynamically based on config. (#16)

From pipeline > config > UI. Provide example project for promptui

- Pipeline to config: `kotaemon.contribs.promptui.config.export_pipeline_to_config`. The config follows schema specified in this document: https://cinnamon-ai.atlassian.net/wiki/spaces/ATM/pages/2748711193/Technical+Detail. Note: this implementation exclude the logs, which will be handled in AUR-408.
- Config to UI: `kotaemon.contribs.promptui.build_from_yaml`
- Example project is located at `examples/promptui/`
This commit is contained in:
Nguyen Trung Duc (john)
2023-09-21 14:27:23 +07:00
committed by GitHub
parent c329c4c03f
commit c6dd01e820
18 changed files with 503 additions and 46 deletions

View File

@@ -1,9 +1,11 @@
import json
from pathlib import Path
from typing import cast
import pytest
from openai.api_resources.embedding import Embedding
from kotaemon.docstores import InMemoryDocumentStore
from kotaemon.documents.base import Document
from kotaemon.embeddings.openai import AzureOpenAIEmbeddings
from kotaemon.pipelines.indexing import IndexVectorStoreFromDocumentPipeline
@@ -21,6 +23,7 @@ def mock_openai_embedding(monkeypatch):
def test_indexing(mock_openai_embedding, tmp_path):
db = ChromaVectorStore(path=str(tmp_path))
doc_store = InMemoryDocumentStore()
embedding = AzureOpenAIEmbeddings(
model="text-embedding-ada-002",
deployment="embedding-deployment",
@@ -29,15 +32,19 @@ def test_indexing(mock_openai_embedding, tmp_path):
)
pipeline = IndexVectorStoreFromDocumentPipeline(
vector_store=db, embedding=embedding
vector_store=db, embedding=embedding, doc_store=doc_store
)
pipeline.doc_store = cast(InMemoryDocumentStore, pipeline.doc_store)
assert pipeline.vector_store._collection.count() == 0, "Expected empty collection"
assert len(pipeline.doc_store._store) == 0, "Expected empty doc store"
pipeline(text=Document(text="Hello world"))
assert pipeline.vector_store._collection.count() == 1, "Index 1 item"
assert len(pipeline.doc_store._store) == 1, "Expected 1 document"
def test_retrieving(mock_openai_embedding, tmp_path):
db = ChromaVectorStore(path=str(tmp_path))
doc_store = InMemoryDocumentStore()
embedding = AzureOpenAIEmbeddings(
model="text-embedding-ada-002",
deployment="embedding-deployment",
@@ -46,14 +53,14 @@ def test_retrieving(mock_openai_embedding, tmp_path):
)
index_pipeline = IndexVectorStoreFromDocumentPipeline(
vector_store=db, embedding=embedding
vector_store=db, embedding=embedding, doc_store=doc_store
)
retrieval_pipeline = RetrieveDocumentFromVectorStorePipeline(
vector_store=db, embedding=embedding
vector_store=db, doc_store=doc_store, embedding=embedding
)
index_pipeline(text=Document(text="Hello world"))
output = retrieval_pipeline(text=["Hello world", "Hello world"])
assert len(output) == 2, "Expected 2 results"
assert output[0] == output[1], "Expected identical results"
assert len(output) == 2, "Expect 2 results"
assert output[0] == output[1], "Expect identical results"

86
tests/test_promptui.py Normal file
View File

@@ -0,0 +1,86 @@
import pytest
from kotaemon.contribs.promptui.config import export_pipeline_to_config
from kotaemon.contribs.promptui.ui import build_from_dict
@pytest.fixture()
def simple_pipeline_cls(tmp_path):
"""Create a pipeline class that can be used"""
from typing import List
from theflow import Node
from kotaemon.base import BaseComponent
from kotaemon.embeddings import AzureOpenAIEmbeddings
from kotaemon.llms.completions.openai import AzureOpenAI
from kotaemon.pipelines.retrieving import (
RetrieveDocumentFromVectorStorePipeline,
)
from kotaemon.vectorstores import ChromaVectorStore
class Pipeline(BaseComponent):
vectorstore_path: str = str(tmp_path)
llm: Node[AzureOpenAI] = Node(
default=AzureOpenAI,
default_kwargs={
"openai_api_base": "https://test.openai.azure.com/",
"openai_api_key": "some-key",
"openai_api_version": "2023-03-15-preview",
"deployment_name": "gpt35turbo",
"temperature": 0,
"request_timeout": 60,
},
)
@Node.decorate(depends_on=["vectorstore_path"])
def retrieving_pipeline(self):
vector_store = ChromaVectorStore(self.vectorstore_path)
embedding = AzureOpenAIEmbeddings(
model="text-embedding-ada-002",
deployment="embedding-deployment",
openai_api_base="https://test.openai.azure.com/",
openai_api_key="some-key",
)
return RetrieveDocumentFromVectorStorePipeline(
vector_store=vector_store, embedding=embedding
)
def run_raw(self, text: str) -> str:
matched_texts: List[str] = self.retrieving_pipeline(text)
return self.llm("\n".join(matched_texts)).text[0]
return Pipeline
Pipeline = simple_pipeline_cls
class TestPromptConfig:
def test_export_prompt_config(self, simple_pipeline_cls):
"""Test if the prompt config is exported correctly"""
pipeline = simple_pipeline_cls()
config_dict = export_pipeline_to_config(pipeline)
config = list(config_dict.values())[0]
assert "inputs" in config, "inputs should be in config"
assert "text" in config["inputs"], "inputs should have config"
assert "params" in config, "params should be in config"
assert "vectorstore_path" in config["params"]
assert "llm.deployment_name" in config["params"]
assert "llm.openai_api_base" in config["params"]
assert "llm.openai_api_key" in config["params"]
assert "llm.openai_api_version" in config["params"]
assert "llm.request_timeout" in config["params"]
assert "llm.temperature" in config["params"]
class TestPromptUI:
def test_uigeneration(self, simple_pipeline_cls):
"""Test if the gradio UI is exposed without any problem"""
pipeline = simple_pipeline_cls()
config = export_pipeline_to_config(pipeline)
build_from_dict(config)