[AUR-389] Add base interface and embedding model (#17)

This change provides the base interface of an embedding, and wrap the Langchain's OpenAI embedding. Usage as follow:

```python
from kotaemon.embeddings import AzureOpenAIEmbeddings

model = AzureOpenAIEmbeddings(
    model="text-embedding-ada-002",
    deployment="embedding-deployment",
    openai_api_base="https://test.openai.azure.com/",
    openai_api_key="some-key",
)
output = model("Hello world")
```
This commit is contained in:
Nguyen Trung Duc (john) 2023-09-14 14:08:58 +07:00 committed by GitHub
parent 1061192731
commit c339912312
6 changed files with 4772 additions and 3 deletions

View File

@ -0,0 +1,62 @@
from typing import List, Type
from langchain.embeddings.base import Embeddings as LCEmbeddings
from theflow import Param
from ..components import BaseComponent
from ..documents.base import Document
class Embeddings(BaseComponent):
...
class LangchainEmbeddings(Embeddings):
_lc_class: Type[LCEmbeddings]
def __init__(self, **params):
if self._lc_class is None:
raise AttributeError(
"Should set _lc_class attribute to the LLM class from Langchain "
"if using LLM from Langchain"
)
self._kwargs: dict = {}
for param in list(params.keys()):
if param in self._lc_class.__fields__: # type: ignore
self._kwargs[param] = params.pop(param)
super().__init__(**params)
def __setattr__(self, name, value):
if name in self._lc_class.__fields__:
setattr(self.agent, name, value)
else:
super().__setattr__(name, value)
@Param.decorate(no_cache=True)
def agent(self):
return self._lc_class(**self._kwargs)
def run_raw(self, text: str) -> List[float]:
return self.agent.embed_query(text) # type: ignore
def run_batch_raw(self, text: List[str]) -> List[List[float]]:
return self.agent.embed_documents(text) # type: ignore
def run_document(self, text: Document) -> List[float]:
return self.agent.embed_query(text.text) # type: ignore
def run_batch_document(self, text: List[Document]):
return self.agent.embed_documents([each.text for each in text]) # type: ignore
def is_document(self, text) -> bool:
if isinstance(text, Document):
return True
elif isinstance(text, List) and isinstance(text[0], Document):
return True
return False
def is_batch(self, text) -> bool:
if isinstance(text, list):
return True
return False

View File

@ -0,0 +1,15 @@
from langchain.embeddings import OpenAIEmbeddings as LCOpenAIEmbeddings
from .base import LangchainEmbeddings
class OpenAIEmbeddings(LangchainEmbeddings):
_lc_class = LCOpenAIEmbeddings
class AzureOpenAIEmbeddings(LangchainEmbeddings):
_lc_class = LCOpenAIEmbeddings
def __init__(self, **params):
params["openai_api_type"] = "azure"
super().__init__(**params)

View File

@ -30,8 +30,8 @@ class LangchainChatLLM(ChatLLM):
self._kwargs[param] = params.pop(param)
super().__init__(**params)
@Param.decorate()
def agent(self):
@Param.decorate(no_cache=True)
def agent(self) -> BaseLanguageModel:
return self._lc_class(**self._kwargs)
def run_raw(self, text: str) -> LLMInterface:
@ -43,7 +43,7 @@ class LangchainChatLLM(ChatLLM):
return self.run_batch_document(inputs)
def run_document(self, text: List[Message]) -> LLMInterface:
pred = self.agent.generate([text])
pred = self.agent.generate([text]) # type: ignore
return LLMInterface(
text=[each.text for each in pred.generations[0]],
completion_tokens=pred.llm_output["token_usage"]["completion_tokens"],

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,46 @@
import json
from pathlib import Path
from unittest.mock import patch
from kotaemon.embeddings.openai import AzureOpenAIEmbeddings
with open(Path(__file__).parent / "resources" / "embedding_openai_batch.json") as f:
openai_embedding_batch = json.load(f)
with open(Path(__file__).parent / "resources" / "embedding_openai.json") as f:
openai_embedding = json.load(f)
@patch(
"openai.api_resources.embedding.Embedding.create",
side_effect=lambda *args, **kwargs: openai_embedding,
)
def test_azureopenai_embeddings_raw(openai_embedding_call):
model = AzureOpenAIEmbeddings(
model="text-embedding-ada-002",
deployment="embedding-deployment",
openai_api_base="https://test.openai.azure.com/",
openai_api_key="some-key",
)
output = model("Hello world")
assert isinstance(output, list)
assert isinstance(output[0], float)
openai_embedding_call.assert_called()
@patch(
"openai.api_resources.embedding.Embedding.create",
side_effect=lambda *args, **kwargs: openai_embedding_batch,
)
def test_azureopenai_embeddings_batch_raw(openai_embedding_call):
model = AzureOpenAIEmbeddings(
model="text-embedding-ada-002",
deployment="embedding-deployment",
openai_api_base="https://test.openai.azure.com/",
openai_api_key="some-key",
)
output = model(["Hello world", "Goodbye world"])
assert isinstance(output, list)
assert isinstance(output[0], list)
assert isinstance(output[0][0], float)
openai_embedding_call.assert_called()