Add Reranker implementation and integration in Retrieving pipeline (#77)
* Add base Reranker * Add LLM Reranker * Add Cohere Reranker * Add integration of Rerankers in Retrieving pipeline
This commit is contained in:
committed by
GitHub
parent
b52f312d8e
commit
9945afdf6f
@@ -1,7 +1,8 @@
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Union
|
||||
from typing import Dict, List, Optional, Sequence, Union
|
||||
|
||||
from llama_index.node_parser.extractors import MetadataExtractor
|
||||
from llama_index.readers.base import BaseReader
|
||||
from theflow import Node
|
||||
from theflow.utils.modules import ObjectInitDeclaration as _
|
||||
@@ -18,6 +19,7 @@ from kotaemon.loaders import (
|
||||
from kotaemon.parsers.splitter import SimpleNodeParser
|
||||
from kotaemon.pipelines.agents import BaseAgent
|
||||
from kotaemon.pipelines.indexing import IndexVectorStoreFromDocumentPipeline
|
||||
from kotaemon.pipelines.reranking import BaseRerankingPipeline
|
||||
from kotaemon.pipelines.retrieving import RetrieveDocumentFromVectorStorePipeline
|
||||
from kotaemon.storages import (
|
||||
BaseDocumentStore,
|
||||
@@ -43,12 +45,14 @@ class ReaderIndexingPipeline(BaseComponent):
|
||||
chunk_overlap: int = 256
|
||||
vector_store: _[BaseVectorStore] = _(InMemoryVectorStore)
|
||||
doc_store: _[BaseDocumentStore] = _(InMemoryDocumentStore)
|
||||
metadata_extractor: Optional[MetadataExtractor] = None
|
||||
|
||||
embedding: AzureOpenAIEmbeddings = AzureOpenAIEmbeddings.withx(
|
||||
model="text-embedding-ada-002",
|
||||
deployment="dummy-q2-text-embedding",
|
||||
openai_api_base="https://bleh-dummy-2.openai.azure.com/",
|
||||
azure_endpoint="https://bleh-dummy-2.openai.azure.com/",
|
||||
openai_api_key=os.environ.get("OPENAI_API_KEY", ""),
|
||||
chunk_size=16,
|
||||
)
|
||||
|
||||
def get_reader(self, input_files: List[Union[str, Path]]):
|
||||
@@ -79,7 +83,9 @@ class ReaderIndexingPipeline(BaseComponent):
|
||||
@Node.auto(depends_on=["chunk_size", "chunk_overlap"])
|
||||
def text_splitter(self) -> SimpleNodeParser:
|
||||
return SimpleNodeParser(
|
||||
chunk_size=self.chunk_size, chunk_overlap=self.chunk_overlap
|
||||
chunk_size=self.chunk_size,
|
||||
chunk_overlap=self.chunk_overlap,
|
||||
metadata_extractor=self.metadata_extractor,
|
||||
)
|
||||
|
||||
def run(
|
||||
@@ -111,12 +117,15 @@ class ReaderIndexingPipeline(BaseComponent):
|
||||
else:
|
||||
self.indexing_vector_pipeline.load(file_storage_path)
|
||||
|
||||
def to_retrieving_pipeline(self, top_k=3):
|
||||
def to_retrieving_pipeline(
|
||||
self, top_k=3, rerankers: Sequence[BaseRerankingPipeline] = []
|
||||
):
|
||||
retrieving_pipeline = RetrieveDocumentFromVectorStorePipeline(
|
||||
vector_store=self.vector_store,
|
||||
doc_store=self.doc_store,
|
||||
embedding=self.embedding,
|
||||
top_k=top_k,
|
||||
rerankers=rerankers,
|
||||
)
|
||||
return retrieving_pipeline
|
||||
|
||||
|
@@ -1,6 +1,6 @@
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
from typing import List, Sequence
|
||||
|
||||
from theflow import Node
|
||||
from theflow.utils.modules import ObjectInitDeclaration as _
|
||||
@@ -11,6 +11,7 @@ from kotaemon.embeddings import AzureOpenAIEmbeddings
|
||||
from kotaemon.llms import PromptTemplate
|
||||
from kotaemon.llms.chats.openai import AzureChatOpenAI
|
||||
from kotaemon.pipelines.agents import BaseAgent
|
||||
from kotaemon.pipelines.reranking import BaseRerankingPipeline
|
||||
from kotaemon.pipelines.retrieving import RetrieveDocumentFromVectorStorePipeline
|
||||
from kotaemon.pipelines.tools import ComponentTool
|
||||
from kotaemon.storages import (
|
||||
@@ -39,7 +40,7 @@ class QuestionAnsweringPipeline(BaseComponent):
|
||||
)
|
||||
|
||||
llm: AzureChatOpenAI = AzureChatOpenAI.withx(
|
||||
openai_api_base="https://bleh-dummy-2.openai.azure.com/",
|
||||
azure_endpoint="https://bleh-dummy-2.openai.azure.com/",
|
||||
openai_api_key=os.environ.get("OPENAI_API_KEY", ""),
|
||||
openai_api_version="2023-03-15-preview",
|
||||
deployment_name="dummy-q2-gpt35",
|
||||
@@ -49,11 +50,12 @@ class QuestionAnsweringPipeline(BaseComponent):
|
||||
|
||||
vector_store: _[BaseVectorStore] = _(InMemoryVectorStore)
|
||||
doc_store: _[BaseDocumentStore] = _(InMemoryDocumentStore)
|
||||
rerankers: Sequence[BaseRerankingPipeline] = []
|
||||
|
||||
embedding: AzureOpenAIEmbeddings = AzureOpenAIEmbeddings.withx(
|
||||
model="text-embedding-ada-002",
|
||||
deployment="dummy-q2-text-embedding",
|
||||
openai_api_base="https://bleh-dummy-2.openai.azure.com/",
|
||||
azure_endpoint="https://bleh-dummy-2.openai.azure.com/",
|
||||
openai_api_key=os.environ.get("OPENAI_API_KEY", ""),
|
||||
)
|
||||
|
||||
@@ -72,6 +74,7 @@ class QuestionAnsweringPipeline(BaseComponent):
|
||||
doc_store=self.doc_store,
|
||||
embedding=self.embedding,
|
||||
top_k=self.retrieval_top_k,
|
||||
rerankers=self.rerankers,
|
||||
)
|
||||
# load persistent from selected path
|
||||
collection_name = file_names_to_collection_name(self.file_name_list)
|
||||
|
114
knowledgehub/pipelines/reranking.py
Normal file
114
knowledgehub/pipelines/reranking.py
Normal file
@@ -0,0 +1,114 @@
|
||||
import os
|
||||
from abc import abstractmethod
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from typing import List, Optional, Union
|
||||
|
||||
from langchain.output_parsers.boolean import BooleanOutputParser
|
||||
|
||||
from ..base import BaseComponent
|
||||
from ..base.schema import Document
|
||||
from ..llms import PromptTemplate
|
||||
from ..llms.chats.base import ChatLLM
|
||||
from ..llms.completions.base import LLM
|
||||
|
||||
BaseLLM = Union[ChatLLM, LLM]
|
||||
|
||||
|
||||
class BaseRerankingPipeline(BaseComponent):
|
||||
@abstractmethod
|
||||
def run(self, documents: List[Document], query: str) -> List[Document]:
|
||||
"""Main method to transform list of documents
|
||||
(re-ranking, filtering, etc)"""
|
||||
...
|
||||
|
||||
|
||||
class CohereReranking(BaseRerankingPipeline):
|
||||
model_name: str = "rerank-multilingual-v2.0"
|
||||
cohere_api_key: Optional[str] = None
|
||||
top_k: int = 1
|
||||
|
||||
def run(self, documents: List[Document], query: str) -> List[Document]:
|
||||
"""Use Cohere Reranker model to re-order documents
|
||||
with their relevance score"""
|
||||
try:
|
||||
import cohere
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Please install Cohere " "`pip install cohere` to use Cohere Reranking"
|
||||
)
|
||||
|
||||
cohere_api_key = (
|
||||
self.cohere_api_key if self.cohere_api_key else os.environ["COHERE_API_KEY"]
|
||||
)
|
||||
cohere_client = cohere.Client(cohere_api_key)
|
||||
|
||||
# output documents
|
||||
compressed_docs = []
|
||||
if len(documents) > 0: # to avoid empty api call
|
||||
_docs = [d.content for d in documents]
|
||||
results = cohere_client.rerank(
|
||||
model=self.model_name, query=query, documents=_docs, top_n=self.top_k
|
||||
)
|
||||
for r in results:
|
||||
doc = documents[r.index]
|
||||
doc.metadata["relevance_score"] = r.relevance_score
|
||||
compressed_docs.append(doc)
|
||||
|
||||
return compressed_docs
|
||||
|
||||
|
||||
RERANK_PROMPT_TEMPLATE = """Given the following question and context,
|
||||
return YES if the context is relevant to the question and NO if it isn't.
|
||||
|
||||
> Question: {question}
|
||||
> Context:
|
||||
>>>
|
||||
{context}
|
||||
>>>
|
||||
> Relevant (YES / NO):"""
|
||||
|
||||
|
||||
class LLMReranking(BaseRerankingPipeline):
|
||||
llm: BaseLLM
|
||||
prompt_template: PromptTemplate = PromptTemplate(template=RERANK_PROMPT_TEMPLATE)
|
||||
top_k: int = 3
|
||||
concurrent: bool = True
|
||||
|
||||
def run(
|
||||
self,
|
||||
documents: List[Document],
|
||||
query: str,
|
||||
) -> List[Document]:
|
||||
"""Filter down documents based on their relevance to the query."""
|
||||
filtered_docs = []
|
||||
output_parser = BooleanOutputParser()
|
||||
|
||||
if self.concurrent:
|
||||
with ThreadPoolExecutor() as executor:
|
||||
futures = []
|
||||
for doc in documents:
|
||||
_prompt = self.prompt_template.populate(
|
||||
question=query, context=doc.get_content()
|
||||
)
|
||||
futures.append(executor.submit(lambda: self.llm(_prompt).text))
|
||||
|
||||
results = [future.result() for future in futures]
|
||||
else:
|
||||
results = []
|
||||
for doc in documents:
|
||||
_prompt = self.prompt_template.populate(
|
||||
question=query, context=doc.get_content()
|
||||
)
|
||||
results.append(self.llm(_prompt).text)
|
||||
|
||||
# use Boolean parser to extract relevancy output from LLM
|
||||
results = [output_parser.parse(result) for result in results]
|
||||
for include_doc, doc in zip(results, documents):
|
||||
if include_doc:
|
||||
filtered_docs.append(doc)
|
||||
|
||||
# prevent returning empty result
|
||||
if len(filtered_docs) == 0:
|
||||
filtered_docs = documents[: self.top_k]
|
||||
|
||||
return filtered_docs
|
@@ -1,7 +1,7 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
from typing import Optional, Sequence
|
||||
|
||||
from theflow import Node, Param
|
||||
|
||||
@@ -9,6 +9,7 @@ from ..base import BaseComponent
|
||||
from ..base.schema import Document, RetrievedDocument
|
||||
from ..embeddings import BaseEmbeddings
|
||||
from ..storages import BaseDocumentStore, BaseVectorStore
|
||||
from .reranking import BaseRerankingPipeline
|
||||
|
||||
VECTOR_STORE_FNAME = "vectorstore"
|
||||
DOC_STORE_FNAME = "docstore"
|
||||
@@ -20,6 +21,7 @@ class RetrieveDocumentFromVectorStorePipeline(BaseComponent):
|
||||
vector_store: Param[BaseVectorStore] = Param()
|
||||
doc_store: Param[BaseDocumentStore] = Param()
|
||||
embedding: Node[BaseEmbeddings] = Node()
|
||||
rerankers: Sequence[BaseRerankingPipeline] = []
|
||||
top_k: int = 1
|
||||
# TODO: refer to llama_index's storage as well
|
||||
|
||||
@@ -51,6 +53,11 @@ class RetrieveDocumentFromVectorStorePipeline(BaseComponent):
|
||||
RetrievedDocument(**doc.to_dict(), score=score)
|
||||
for doc, score in zip(docs, scores)
|
||||
]
|
||||
# use additional reranker to re-order the document list
|
||||
if self.rerankers:
|
||||
for reranker in self.rerankers:
|
||||
result = reranker(documents=result, query=text)
|
||||
|
||||
return result
|
||||
|
||||
def save(
|
||||
|
Reference in New Issue
Block a user