[AUR-429] Add MVP pipeline with Ingestion and QA stage (#39)

* add base Tool

* minor update test_tool

* update test dependency

* update test dependency

* Fix namespace conflict

* update test

* add base Agent Interface, add ReWoo Agent

* minor update

* update test

* fix typo

* remove unneeded print

* update rewoo agent

* add LLMTool

* update BaseAgent type

* add ReAct agent

* add ReAct agent

* minor update

* minor update

* minor update

* minor update

* update base reader with BaseComponent

* add splitter

* update agent and tool

* update vectorstores

* update load/save for indexing and retrieving pipeline

* update test_agent for more use-cases

* add missing dependency for test

* update test case for in memory vectorstore

* add TextSplitter to BaseComponent

* update type hint basetool

* add insurance mvp pipeline

* update requirements

* Remove redundant plugins param

* Mock GoogleSearch

---------

Co-authored-by: trducng <trungduc1992@gmail.com>
This commit is contained in:
Tuan Anh Nguyen Dang (Tadashi_Cin)
2023-10-05 12:31:33 +07:00
committed by GitHub
parent 2638152054
commit 79cc60e6a2
9 changed files with 389 additions and 4 deletions

View File

@@ -0,0 +1,149 @@
import os
from pathlib import Path
from typing import List, Optional, Union
from theflow import Node, Param
from kotaemon.base import BaseComponent
from kotaemon.docstores import InMemoryDocumentStore
from kotaemon.embeddings import AzureOpenAIEmbeddings
from kotaemon.loaders import (
AutoReader,
DirectoryReader,
MathpixPDFReader,
PandasExcelReader,
)
from kotaemon.parsers.splitter import SimpleNodeParser
from kotaemon.pipelines.agents import BaseAgent
from kotaemon.pipelines.indexing import IndexVectorStoreFromDocumentPipeline
from kotaemon.pipelines.retrieving import RetrieveDocumentFromVectorStorePipeline
from kotaemon.vectorstores import InMemoryVectorStore
from .qa import AgentQAPipeline, QuestionAnsweringPipeline
from .utils import file_names_to_collection_name
class ReaderIndexingPipeline(BaseComponent):
"""
Indexing pipeline which takes input from list of files
and perform ingestion to vectorstore
"""
# Expose variables for users to switch in prompt ui
storage_path: Path = Path("./storage")
reader_name: str = "normal" # "normal" or "mathpix"
openai_api_base: str = "https://bleh-dummy-2.openai.azure.com/"
openai_api_key: str = os.environ.get("OPENAI_API_KEY", "")
chunk_size: int = 1024
chunk_overlap: int = 256
file_name_list: List[str] = list()
@Param.decorate()
def vector_store(self):
return InMemoryVectorStore()
@Param.decorate()
def doc_store(self):
doc_store = InMemoryDocumentStore()
return doc_store
@Node.decorate(depends_on=["openai_api_base", "openai_api_key"])
def embedding(self):
return AzureOpenAIEmbeddings(
model="text-embedding-ada-002",
deployment="dummy-q2-text-embedding",
openai_api_base=self.openai_api_base,
openai_api_key=self.openai_api_key,
)
def get_reader(self, input_files: List[Union[str, Path]]):
# document parsers
file_extractor = {
".xlsx": PandasExcelReader(),
}
if self.reader_name == "normal":
file_extractor[".pdf"] = AutoReader("UnstructuredReader")
else:
file_extractor[".pdf"] = MathpixPDFReader()
main_reader = DirectoryReader(
input_files=input_files,
file_extractor=file_extractor,
)
return main_reader
@Node.decorate(depends_on=["doc_store", "vector_store", "embedding"])
def indexing_vector_pipeline(self):
return IndexVectorStoreFromDocumentPipeline(
doc_store=self.doc_store,
vector_store=self.vector_store,
embedding=self.embedding,
)
@Node.decorate(depends_on=["chunk_size", "chunk_overlap"])
def text_splitter(self):
# chunking using NodeParser from llama-index
return SimpleNodeParser(
chunk_size=self.chunk_size, chunk_overlap=self.chunk_overlap
)
def run(
self,
file_path_list: Union[List[Union[str, Path]], Union[str, Path]],
force_reindex: Optional[bool] = False,
):
self.storage_path.mkdir(exist_ok=True)
if not isinstance(file_path_list, list):
file_path_list = [file_path_list]
self.file_name_list = [Path(path).stem for path in file_path_list]
collection_name = file_names_to_collection_name(self.file_name_list)
file_storage_path = self.storage_path / collection_name
# skip indexing if storage path exist
if force_reindex or not file_storage_path.exists():
file_storage_path.mkdir(exist_ok=True)
# reader call
documents = self.get_reader(input_files=file_path_list)()
nodes = self.text_splitter(documents)
self.log_progress(".num_docs", num_docs=len(nodes))
self.indexing_vector_pipeline(nodes)
# persist right after indexing
self.indexing_vector_pipeline.save(file_storage_path)
else:
self.indexing_vector_pipeline.load(file_storage_path)
def to_retrieving_pipeline(self):
retrieving_pipeline = RetrieveDocumentFromVectorStorePipeline(
vector_store=self.vector_store,
doc_store=self.doc_store,
embedding=self.embedding,
)
return retrieving_pipeline
def to_qa_pipeline(self, llm: BaseComponent, **kwargs):
qa_pipeline = QuestionAnsweringPipeline(
storage_path=self.storage_path,
file_name_list=self.file_name_list,
vector_store=self.vector_store,
doc_score=self.doc_store,
embedding=self.embedding,
llm=llm,
**kwargs
)
return qa_pipeline
def to_agent_pipeline(self, agent: BaseAgent, **kwargs):
agent_pipeline = AgentQAPipeline(
storage_path=self.storage_path,
file_name_list=self.file_name_list,
vector_store=self.vector_store,
doc_score=self.doc_store,
embedding=self.embedding,
agent=agent,
**kwargs
)
agent_pipeline.add_search_tool()
return agent_pipeline

View File

@@ -0,0 +1,130 @@
import os
from pathlib import Path
from typing import List
from theflow import Node, Param
from kotaemon.base import BaseComponent
from kotaemon.docstores import InMemoryDocumentStore
from kotaemon.documents.base import RetrievedDocument
from kotaemon.embeddings import AzureOpenAIEmbeddings
from kotaemon.llms.chats.openai import AzureChatOpenAI
from kotaemon.pipelines.agents import BaseAgent
from kotaemon.pipelines.retrieving import RetrieveDocumentFromVectorStorePipeline
from kotaemon.pipelines.tools import ComponentTool
from kotaemon.prompt.template import PromptTemplate
from kotaemon.vectorstores import InMemoryVectorStore
from .utils import file_names_to_collection_name
class QuestionAnsweringPipeline(BaseComponent):
"""
Question Answering pipeline ultilizing a child Retrieving pipeline
"""
storage_path: Path = Path("./storage")
retrieval_top_k: int = 3
openai_api_base: str = "https://bleh-dummy-2.openai.azure.com/"
openai_api_key: str = os.environ.get("OPENAI_API_KEY", "")
file_name_list: List[str]
"""List of filename, incombination with storage_path to
create persistent path of vectorstore"""
prompt_template: PromptTemplate = PromptTemplate(
'Answer the following question: "{question}". '
"The context is: \n{context}\nAnswer: "
)
@Node.decorate(depends_on=["openai_api_base", "openai_api_key"])
def llm(self):
return AzureChatOpenAI(
openai_api_base="https://bleh-dummy-2.openai.azure.com/",
openai_api_key=self.openai_api_key,
openai_api_version="2023-03-15-preview",
deployment_name="dummy-q2-gpt35",
temperature=0,
request_timeout=60,
)
@Param.decorate()
def vector_store(self):
return InMemoryVectorStore()
@Param.decorate()
def doc_store(self):
doc_store = InMemoryDocumentStore()
return doc_store
@Node.decorate(depends_on=["openai_api_base", "openai_api_key"])
def embedding(self):
return AzureOpenAIEmbeddings(
model="text-embedding-ada-002",
deployment="dummy-q2-text-embedding",
openai_api_base=self.openai_api_base,
openai_api_key=self.openai_api_key,
)
@Node.decorate(depends_on=["doc_store", "vector_store", "embedding"])
def retrieving_pipeline(self):
retrieving_pipeline = RetrieveDocumentFromVectorStorePipeline(
vector_store=self.vector_store,
doc_store=self.doc_store,
embedding=self.embedding,
)
# load persistent from selected path
collection_name = file_names_to_collection_name(self.file_name_list)
retrieving_pipeline.load(self.storage_path / collection_name)
return retrieving_pipeline
def _format_doc_text(self, text: str) -> str:
return text.replace("\n", " ")
def _format_retrieved_context(self, documents: List[RetrievedDocument]) -> str:
matched_texts: List[str] = [
self._format_doc_text(doc.text) for doc in documents
]
return "\n\n".join(matched_texts)
def run(self, question: str) -> str:
# retrieve relevant documents as context
documents = self.retrieving_pipeline(question, top_k=int(self.retrieval_top_k))
context = self._format_retrieved_context(documents)
self.log_progress(".context", context=context)
# generate the answer
prompt = self.prompt_template.populate(
context=context,
question=question,
)
self.log_progress(".prompt", prompt=prompt)
answer = self.llm(prompt).text
return answer
class AgentQAPipeline(QuestionAnsweringPipeline):
"""
QA pipeline ultilizing a child Retrieving pipeline and a Agent pipeline
"""
agent: BaseAgent
def add_search_tool(self):
search_tool = ComponentTool(
name="search_doc",
description=(
"A vector store that searches for similar and "
"related content "
f"in a document: {' '.join(self.file_name_list)}. "
"The result is a huge chunk of text related "
"to your search but can also "
"contain irrelevant info."
),
postprocessor=self._format_retrieved_context,
component=self.retrieving_pipeline,
)
if search_tool not in self.agent.plugins:
self.agent.plugins.append(search_tool)
def run(self, question: str) -> str:
answer = self.agent(question).output
return answer

View File

@@ -0,0 +1,17 @@
import hashlib
from typing import List
def filename_to_hash(filename: str) -> str:
"""
Convert filename to hash to be used as collection name for storage
"""
result = hashlib.md5(filename.encode())
return result.hexdigest()
def file_names_to_collection_name(file_name_list: List[str]) -> str:
"""
Convert list of filenames to collection name
"""
return filename_to_hash(" ".join(file_name_list))