[AUR-392, AUR-413, AUR-414] Define base vector store, and make use of ChromaVectorStore from llama_index. Indexing and retrieving vectors with vector store (#18)
Design the base interface of vector store, and apply it to the Chroma Vector Store (wrapped around llama_index's implementation). Provide the pipelines to populate and retrieve from vector store.
This commit is contained in:
committed by
GitHub
parent
c339912312
commit
620b2b03ca
59
tests/test_indexing_retrieval.py
Normal file
59
tests/test_indexing_retrieval.py
Normal file
@@ -0,0 +1,59 @@
|
||||
import json
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
from openai.api_resources.embedding import Embedding
|
||||
|
||||
from kotaemon.documents.base import Document
|
||||
from kotaemon.embeddings.openai import AzureOpenAIEmbeddings
|
||||
from kotaemon.pipelines.indexing import IndexVectorStoreFromDocumentPipeline
|
||||
from kotaemon.pipelines.retrieving import RetrieveDocumentFromVectorStorePipeline
|
||||
from kotaemon.vectorstores import ChromaVectorStore
|
||||
|
||||
with open(Path(__file__).parent / "resources" / "embedding_openai.json") as f:
|
||||
openai_embedding = json.load(f)
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
def mock_openai_embedding(monkeypatch):
|
||||
monkeypatch.setattr(Embedding, "create", lambda *args, **kwargs: openai_embedding)
|
||||
|
||||
|
||||
def test_indexing(mock_openai_embedding, tmp_path):
|
||||
db = ChromaVectorStore(path=str(tmp_path))
|
||||
embedding = AzureOpenAIEmbeddings(
|
||||
model="text-embedding-ada-002",
|
||||
deployment="embedding-deployment",
|
||||
openai_api_base="https://test.openai.azure.com/",
|
||||
openai_api_key="some-key",
|
||||
)
|
||||
|
||||
pipeline = IndexVectorStoreFromDocumentPipeline(
|
||||
vector_store=db, embedding=embedding
|
||||
)
|
||||
assert pipeline.vector_store._collection.count() == 0, "Expected empty collection"
|
||||
pipeline(text=Document(text="Hello world"))
|
||||
assert pipeline.vector_store._collection.count() == 1, "Index 1 item"
|
||||
|
||||
|
||||
def test_retrieving(mock_openai_embedding, tmp_path):
|
||||
db = ChromaVectorStore(path=str(tmp_path))
|
||||
embedding = AzureOpenAIEmbeddings(
|
||||
model="text-embedding-ada-002",
|
||||
deployment="embedding-deployment",
|
||||
openai_api_base="https://test.openai.azure.com/",
|
||||
openai_api_key="some-key",
|
||||
)
|
||||
|
||||
index_pipeline = IndexVectorStoreFromDocumentPipeline(
|
||||
vector_store=db, embedding=embedding
|
||||
)
|
||||
retrieval_pipeline = RetrieveDocumentFromVectorStorePipeline(
|
||||
vector_store=db, embedding=embedding
|
||||
)
|
||||
|
||||
index_pipeline(text=Document(text="Hello world"))
|
||||
output = retrieval_pipeline(text=["Hello world", "Hello world"])
|
||||
|
||||
assert len(output) == 2, "Expected 2 results"
|
||||
assert output[0] == output[1], "Expected identical results"
|
Reference in New Issue
Block a user