[AUR-392, AUR-413, AUR-414] Define base vector store, and make use of ChromaVectorStore from llama_index. Indexing and retrieving vectors with vector store (#18)

Design the base interface of vector store, and apply it to the Chroma Vector Store (wrapped around llama_index's implementation). Provide the pipelines to populate and retrieve from vector store.
This commit is contained in:
Nguyen Trung Duc (john)
2023-09-14 14:18:20 +07:00
committed by GitHub
parent c339912312
commit 620b2b03ca
10 changed files with 486 additions and 16 deletions

View File

@@ -0,0 +1,59 @@
import json
from pathlib import Path
import pytest
from openai.api_resources.embedding import Embedding
from kotaemon.documents.base import Document
from kotaemon.embeddings.openai import AzureOpenAIEmbeddings
from kotaemon.pipelines.indexing import IndexVectorStoreFromDocumentPipeline
from kotaemon.pipelines.retrieving import RetrieveDocumentFromVectorStorePipeline
from kotaemon.vectorstores import ChromaVectorStore
with open(Path(__file__).parent / "resources" / "embedding_openai.json") as f:
openai_embedding = json.load(f)
@pytest.fixture(scope="function")
def mock_openai_embedding(monkeypatch):
monkeypatch.setattr(Embedding, "create", lambda *args, **kwargs: openai_embedding)
def test_indexing(mock_openai_embedding, tmp_path):
db = ChromaVectorStore(path=str(tmp_path))
embedding = AzureOpenAIEmbeddings(
model="text-embedding-ada-002",
deployment="embedding-deployment",
openai_api_base="https://test.openai.azure.com/",
openai_api_key="some-key",
)
pipeline = IndexVectorStoreFromDocumentPipeline(
vector_store=db, embedding=embedding
)
assert pipeline.vector_store._collection.count() == 0, "Expected empty collection"
pipeline(text=Document(text="Hello world"))
assert pipeline.vector_store._collection.count() == 1, "Index 1 item"
def test_retrieving(mock_openai_embedding, tmp_path):
db = ChromaVectorStore(path=str(tmp_path))
embedding = AzureOpenAIEmbeddings(
model="text-embedding-ada-002",
deployment="embedding-deployment",
openai_api_base="https://test.openai.azure.com/",
openai_api_key="some-key",
)
index_pipeline = IndexVectorStoreFromDocumentPipeline(
vector_store=db, embedding=embedding
)
retrieval_pipeline = RetrieveDocumentFromVectorStorePipeline(
vector_store=db, embedding=embedding
)
index_pipeline(text=Document(text="Hello world"))
output = retrieval_pipeline(text=["Hello world", "Hello world"])
assert len(output) == 2, "Expected 2 results"
assert output[0] == output[1], "Expected identical results"

61
tests/test_vectorstore.py Normal file
View File

@@ -0,0 +1,61 @@
from kotaemon.documents.base import Document
from kotaemon.vectorstores import ChromaVectorStore
class TestChromaVectorStore:
def test_add(self, tmp_path):
"""Test that the DB add correctly"""
db = ChromaVectorStore(path=str(tmp_path))
embeddings = [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]
metadatas = [{"a": 1, "b": 2}, {"a": 3, "b": 4}]
ids = ["1", "2"]
assert db._collection.count() == 0, "Expected empty collection"
output = db.add(embeddings=embeddings, metadatas=metadatas, ids=ids)
assert output == ids, "Expected output to be the same as ids"
assert db._collection.count() == 2, "Expected 2 added entries"
def test_add_from_docs(self, tmp_path):
db = ChromaVectorStore(path=str(tmp_path))
embeddings = [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]
metadatas = [{"a": 1, "b": 2}, {"a": 3, "b": 4}]
documents = [
Document(embedding=embedding, metadata=metadata)
for embedding, metadata in zip(embeddings, metadatas)
]
assert db._collection.count() == 0, "Expected empty collection"
output = db.add_from_docs(documents)
assert len(output) == 2, "Expected outputing 2 ids"
assert db._collection.count() == 2, "Expected 2 added entries"
def test_delete(self, tmp_path):
db = ChromaVectorStore(path=str(tmp_path))
embeddings = [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9]]
metadatas = [{"a": 1, "b": 2}, {"a": 3, "b": 4}, {"a": 5, "b": 6}]
ids = ["a", "b", "c"]
db.add(embeddings=embeddings, metadatas=metadatas, ids=ids)
assert db._collection.count() == 3, "Expected 3 added entries"
db.delete(ids=["a", "b"])
assert db._collection.count() == 1, "Expected 1 remaining entry"
db.delete(ids=["c"])
assert db._collection.count() == 0, "Expected 0 remaining entry"
def test_query(self, tmp_path):
db = ChromaVectorStore(path=str(tmp_path))
embeddings = [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9]]
metadatas = [{"a": 1, "b": 2}, {"a": 3, "b": 4}, {"a": 5, "b": 6}]
ids = ["a", "b", "c"]
db.add(embeddings=embeddings, metadatas=metadatas, ids=ids)
_, sim, out_ids = db.query(embedding=[0.1, 0.2, 0.3], top_k=1)
assert sim == [0.0]
assert out_ids == ["a"]
_, _, out_ids = db.query(embedding=[0.42, 0.52, 0.53], top_k=1)
assert out_ids == ["b"]