[AUR-431] Add ReAct Agent (#34)
* add base Tool * minor update test_tool * update test dependency * update test dependency * Fix namespace conflict * update test * add base Agent Interface, add ReWoo Agent * minor update * update test * fix typo * remove unneeded print * update rewoo agent * add LLMTool * update BaseAgent type * add ReAct agent * add ReAct agent * minor update * minor update * minor update * minor update * update docstring * fix max_iteration --------- Co-authored-by: trducng <trungduc1992@gmail.com>
This commit is contained in:
parent
91048770fa
commit
3cceec63ef
|
@ -34,16 +34,16 @@ class LangchainChatLLM(ChatLLM):
|
||||||
def agent(self) -> BaseLanguageModel:
|
def agent(self) -> BaseLanguageModel:
|
||||||
return self._lc_class(**self._kwargs)
|
return self._lc_class(**self._kwargs)
|
||||||
|
|
||||||
def run_raw(self, text: str) -> LLMInterface:
|
def run_raw(self, text: str, **kwargs) -> LLMInterface:
|
||||||
message = HumanMessage(content=text)
|
message = HumanMessage(content=text)
|
||||||
return self.run_document([message])
|
return self.run_document([message], **kwargs)
|
||||||
|
|
||||||
def run_batch_raw(self, text: List[str]) -> List[LLMInterface]:
|
def run_batch_raw(self, text: List[str], **kwargs) -> List[LLMInterface]:
|
||||||
inputs = [[HumanMessage(content=each)] for each in text]
|
inputs = [[HumanMessage(content=each)] for each in text]
|
||||||
return self.run_batch_document(inputs)
|
return self.run_batch_document(inputs, **kwargs)
|
||||||
|
|
||||||
def run_document(self, text: List[Message]) -> LLMInterface:
|
def run_document(self, text: List[Message], **kwargs) -> LLMInterface:
|
||||||
pred = self.agent.generate([text]) # type: ignore
|
pred = self.agent.generate([text], **kwargs) # type: ignore
|
||||||
return LLMInterface(
|
return LLMInterface(
|
||||||
text=[each.text for each in pred.generations[0]],
|
text=[each.text for each in pred.generations[0]],
|
||||||
completion_tokens=pred.llm_output["token_usage"]["completion_tokens"],
|
completion_tokens=pred.llm_output["token_usage"]["completion_tokens"],
|
||||||
|
@ -52,20 +52,22 @@ class LangchainChatLLM(ChatLLM):
|
||||||
logits=[],
|
logits=[],
|
||||||
)
|
)
|
||||||
|
|
||||||
def run_batch_document(self, text: List[List[Message]]) -> List[LLMInterface]:
|
def run_batch_document(
|
||||||
|
self, text: List[List[Message]], **kwargs
|
||||||
|
) -> List[LLMInterface]:
|
||||||
outputs = []
|
outputs = []
|
||||||
for each_text in text:
|
for each_text in text:
|
||||||
outputs.append(self.run_document(each_text))
|
outputs.append(self.run_document(each_text, **kwargs))
|
||||||
return outputs
|
return outputs
|
||||||
|
|
||||||
def is_document(self, text) -> bool:
|
def is_document(self, text, **kwargs) -> bool:
|
||||||
if isinstance(text, str):
|
if isinstance(text, str):
|
||||||
return False
|
return False
|
||||||
elif isinstance(text, List) and isinstance(text[0], str):
|
elif isinstance(text, List) and isinstance(text[0], str):
|
||||||
return False
|
return False
|
||||||
return True
|
return True
|
||||||
|
|
||||||
def is_batch(self, text) -> bool:
|
def is_batch(self, text, **kwargs) -> bool:
|
||||||
if isinstance(text, str):
|
if isinstance(text, str):
|
||||||
return False
|
return False
|
||||||
elif isinstance(text, List):
|
elif isinstance(text, List):
|
||||||
|
|
|
@ -1,5 +1,5 @@
|
||||||
from enum import Enum
|
from enum import Enum
|
||||||
from typing import Dict, List, Union
|
from typing import Dict, List, Optional, Union
|
||||||
|
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel
|
||||||
|
|
||||||
|
@ -50,7 +50,7 @@ class AgentOutput(BaseModel):
|
||||||
class BaseAgent(BaseTool):
|
class BaseAgent(BaseTool):
|
||||||
name: str
|
name: str
|
||||||
"""Name of the agent."""
|
"""Name of the agent."""
|
||||||
type: AgentType
|
agent_type: AgentType
|
||||||
"""Agent type, must be one of AgentType"""
|
"""Agent type, must be one of AgentType"""
|
||||||
description: str
|
description: str
|
||||||
"""Description used to tell the model how/when/why to use the agent.
|
"""Description used to tell the model how/when/why to use the agent.
|
||||||
|
@ -59,7 +59,7 @@ class BaseAgent(BaseTool):
|
||||||
llm: Union[BaseLLM, Dict[str, BaseLLM]]
|
llm: Union[BaseLLM, Dict[str, BaseLLM]]
|
||||||
"""Specify LLM to be used in the model, cam be a dict to supply different
|
"""Specify LLM to be used in the model, cam be a dict to supply different
|
||||||
LLMs to multiple purposes in the agent"""
|
LLMs to multiple purposes in the agent"""
|
||||||
prompt_template: Union[PromptTemplate, Dict[str, PromptTemplate]]
|
prompt_template: Optional[Union[PromptTemplate, Dict[str, PromptTemplate]]]
|
||||||
"""A prompt template or a dict to supply different prompt to the agent
|
"""A prompt template or a dict to supply different prompt to the agent
|
||||||
"""
|
"""
|
||||||
plugins: List[BaseTool]
|
plugins: List[BaseTool]
|
||||||
|
|
3
knowledgehub/pipelines/agents/react/__init__.py
Normal file
3
knowledgehub/pipelines/agents/react/__init__.py
Normal file
|
@ -0,0 +1,3 @@
|
||||||
|
from .agent import ReactAgent
|
||||||
|
|
||||||
|
__all__ = ["ReactAgent"]
|
188
knowledgehub/pipelines/agents/react/agent.py
Normal file
188
knowledgehub/pipelines/agents/react/agent.py
Normal file
|
@ -0,0 +1,188 @@
|
||||||
|
import logging
|
||||||
|
import re
|
||||||
|
from typing import Dict, List, Optional, Tuple, Type, Union
|
||||||
|
|
||||||
|
from pydantic import BaseModel, create_model
|
||||||
|
|
||||||
|
from kotaemon.prompt.template import PromptTemplate
|
||||||
|
|
||||||
|
from ..base import AgentOutput, AgentType, BaseAgent, BaseLLM, BaseTool
|
||||||
|
from ..output.base import AgentAction, AgentFinish
|
||||||
|
|
||||||
|
FINAL_ANSWER_ACTION = "Final Answer:"
|
||||||
|
|
||||||
|
|
||||||
|
class ReactAgent(BaseAgent):
|
||||||
|
"""
|
||||||
|
Sequential ReactAgent class inherited from BaseAgent.
|
||||||
|
Implementing ReAct agent paradigm https://arxiv.org/pdf/2210.03629.pdf
|
||||||
|
"""
|
||||||
|
|
||||||
|
name: str = "ReactAgent"
|
||||||
|
agent_type: AgentType = AgentType.react
|
||||||
|
description: str = "ReactAgent for answering multi-step reasoning questions"
|
||||||
|
llm: Union[BaseLLM, Dict[str, BaseLLM]]
|
||||||
|
prompt_template: Optional[PromptTemplate] = None
|
||||||
|
plugins: List[BaseTool] = list()
|
||||||
|
examples: Dict[str, Union[str, List[str]]] = dict()
|
||||||
|
args_schema: Optional[Type[BaseModel]] = create_model(
|
||||||
|
"ReactArgsSchema", instruction=(str, ...)
|
||||||
|
)
|
||||||
|
intermediate_steps: List[Tuple[Union[AgentAction, AgentFinish], str]] = []
|
||||||
|
"""List of AgentAction and observation (tool) output"""
|
||||||
|
max_iterations = 10
|
||||||
|
strict_decode: bool = False
|
||||||
|
|
||||||
|
def _compose_plugin_description(self) -> str:
|
||||||
|
"""
|
||||||
|
Compose the worker prompt from the workers.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
toolname1[input]: tool1 description
|
||||||
|
toolname2[input]: tool2 description
|
||||||
|
"""
|
||||||
|
prompt = ""
|
||||||
|
try:
|
||||||
|
for plugin in self.plugins:
|
||||||
|
prompt += f"{plugin.name}[input]: {plugin.description}\n"
|
||||||
|
except Exception:
|
||||||
|
raise ValueError("Worker must have a name and description.")
|
||||||
|
return prompt
|
||||||
|
|
||||||
|
def _construct_scratchpad(
|
||||||
|
self, intermediate_steps: List[Tuple[Union[AgentAction, AgentFinish], str]] = []
|
||||||
|
) -> str:
|
||||||
|
"""Construct the scratchpad that lets the agent continue its thought process."""
|
||||||
|
thoughts = ""
|
||||||
|
for action, observation in intermediate_steps:
|
||||||
|
thoughts += action.log
|
||||||
|
thoughts += f"\nObservation: {observation}\nThought:"
|
||||||
|
return thoughts
|
||||||
|
|
||||||
|
def _parse_output(self, text: str) -> Optional[Union[AgentAction, AgentFinish]]:
|
||||||
|
"""
|
||||||
|
Parse text output from LLM for the next Action or Final Answer
|
||||||
|
Using Regex to parse "Action:\n Action Input:\n" for the next Action
|
||||||
|
Using FINAL_ANSWER_ACTION to parse Final Answer
|
||||||
|
|
||||||
|
Args:
|
||||||
|
text[str]: input text to parse
|
||||||
|
"""
|
||||||
|
includes_answer = FINAL_ANSWER_ACTION in text
|
||||||
|
regex = (
|
||||||
|
r"Action\s*\d*\s*:[\s]*(.*?)[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)"
|
||||||
|
)
|
||||||
|
action_match = re.search(regex, text, re.DOTALL)
|
||||||
|
action_output: Optional[Union[AgentAction, AgentFinish]] = None
|
||||||
|
if action_match:
|
||||||
|
if includes_answer:
|
||||||
|
raise Exception(
|
||||||
|
"Parsing LLM output produced both a final answer "
|
||||||
|
f"and a parse-able action: {text}"
|
||||||
|
)
|
||||||
|
action = action_match.group(1).strip()
|
||||||
|
action_input = action_match.group(2)
|
||||||
|
tool_input = action_input.strip(" ")
|
||||||
|
# ensure if its a well formed SQL query we don't remove any trailing " chars
|
||||||
|
if tool_input.startswith("SELECT ") is False:
|
||||||
|
tool_input = tool_input.strip('"')
|
||||||
|
|
||||||
|
action_output = AgentAction(action, tool_input, text)
|
||||||
|
|
||||||
|
elif includes_answer:
|
||||||
|
action_output = AgentFinish(
|
||||||
|
{"output": text.split(FINAL_ANSWER_ACTION)[-1].strip()}, text
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
if self.strict_decode:
|
||||||
|
raise Exception(f"Could not parse LLM output: `{text}`")
|
||||||
|
else:
|
||||||
|
action_output = AgentFinish({"output": text}, text)
|
||||||
|
|
||||||
|
return action_output
|
||||||
|
|
||||||
|
def _compose_prompt(self, instruction) -> str:
|
||||||
|
"""
|
||||||
|
Compose the prompt from template, worker description, examples and instruction.
|
||||||
|
"""
|
||||||
|
agent_scratchpad = self._construct_scratchpad(self.intermediate_steps)
|
||||||
|
tool_description = self._compose_plugin_description()
|
||||||
|
tool_names = ", ".join([plugin.name for plugin in self.plugins])
|
||||||
|
if self.prompt_template is None:
|
||||||
|
from .prompt import zero_shot_react_prompt
|
||||||
|
|
||||||
|
self.prompt_template = zero_shot_react_prompt
|
||||||
|
return self.prompt_template.populate(
|
||||||
|
instruction=instruction,
|
||||||
|
agent_scratchpad=agent_scratchpad,
|
||||||
|
tool_description=tool_description,
|
||||||
|
tool_names=tool_names,
|
||||||
|
)
|
||||||
|
|
||||||
|
def _format_function_map(self) -> Dict[str, BaseTool]:
|
||||||
|
"""Format the function map for the open AI function API.
|
||||||
|
|
||||||
|
Return:
|
||||||
|
Dict[str, Callable]: The function map.
|
||||||
|
"""
|
||||||
|
# Map the function name to the real function object.
|
||||||
|
function_map = {}
|
||||||
|
for plugin in self.plugins:
|
||||||
|
function_map[plugin.name] = plugin
|
||||||
|
return function_map
|
||||||
|
|
||||||
|
def clear(self):
|
||||||
|
"""
|
||||||
|
Clear and reset the agent.
|
||||||
|
"""
|
||||||
|
self.intermediate_steps = []
|
||||||
|
|
||||||
|
def run(self, instruction, max_iterations=None):
|
||||||
|
"""
|
||||||
|
Run the agent with the given instruction.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
instruction: Instruction to run the agent with.
|
||||||
|
max_iterations: Maximum number of iterations
|
||||||
|
of reasoning steps, defaults to 10.
|
||||||
|
|
||||||
|
Return:
|
||||||
|
AgentOutput object.
|
||||||
|
"""
|
||||||
|
if not max_iterations:
|
||||||
|
max_iterations = self.max_iterations
|
||||||
|
assert max_iterations > 0
|
||||||
|
|
||||||
|
self.clear()
|
||||||
|
logging.info(f"Running {self.name} with instruction: {instruction}")
|
||||||
|
total_cost = 0.0
|
||||||
|
total_token = 0
|
||||||
|
|
||||||
|
for _ in range(max_iterations):
|
||||||
|
prompt = self._compose_prompt(instruction)
|
||||||
|
logging.info(f"Prompt: {prompt}")
|
||||||
|
response = self.llm(prompt, stop=["Observation:"]) # type: ignore
|
||||||
|
response_text = response.text[0]
|
||||||
|
logging.info(f"Response: {response_text}")
|
||||||
|
action_step = self._parse_output(response_text)
|
||||||
|
if action_step is None:
|
||||||
|
raise ValueError("Invalid action")
|
||||||
|
is_finished_chain = isinstance(action_step, AgentFinish)
|
||||||
|
if is_finished_chain:
|
||||||
|
result = ""
|
||||||
|
else:
|
||||||
|
assert isinstance(action_step, AgentAction)
|
||||||
|
action_name = action_step.tool
|
||||||
|
tool_input = action_step.tool_input
|
||||||
|
logging.info(f"Action: {action_name}")
|
||||||
|
logging.info(f"Tool Input: {tool_input}")
|
||||||
|
result = self._format_function_map()[action_name](tool_input)
|
||||||
|
logging.info(f"Result: {result}")
|
||||||
|
|
||||||
|
self.intermediate_steps.append((action_step, result))
|
||||||
|
if is_finished_chain:
|
||||||
|
break
|
||||||
|
|
||||||
|
return AgentOutput(
|
||||||
|
output=response_text, cost=total_cost, token_usage=total_token
|
||||||
|
)
|
28
knowledgehub/pipelines/agents/react/prompt.py
Normal file
28
knowledgehub/pipelines/agents/react/prompt.py
Normal file
|
@ -0,0 +1,28 @@
|
||||||
|
# flake8: noqa
|
||||||
|
|
||||||
|
from kotaemon.prompt.template import PromptTemplate
|
||||||
|
|
||||||
|
zero_shot_react_prompt = PromptTemplate(
|
||||||
|
template="""Answer the following questions as best you can. You have access to the following tools:
|
||||||
|
{tool_description}.
|
||||||
|
Use the following format:
|
||||||
|
|
||||||
|
Question: the input question you must answer
|
||||||
|
Thought: you should always think about what to do
|
||||||
|
|
||||||
|
Action: the action to take, should be one of [{tool_names}]
|
||||||
|
|
||||||
|
Action Input: the input to the action
|
||||||
|
|
||||||
|
Observation: the result of the action
|
||||||
|
|
||||||
|
... (this Thought/Action/Action Input/Observation can repeat N times)
|
||||||
|
#Thought: I now know the final answer
|
||||||
|
Final Answer: the final answer to the original input question
|
||||||
|
|
||||||
|
Begin! After each Action Input.
|
||||||
|
|
||||||
|
Question: {instruction}
|
||||||
|
Thought:{agent_scratchpad}
|
||||||
|
"""
|
||||||
|
)
|
|
@ -21,7 +21,7 @@ class RewooAgent(BaseAgent):
|
||||||
Implementing ReWOO paradigm https://arxiv.org/pdf/2305.18323.pdf"""
|
Implementing ReWOO paradigm https://arxiv.org/pdf/2305.18323.pdf"""
|
||||||
|
|
||||||
name: str = "RewooAgent"
|
name: str = "RewooAgent"
|
||||||
type: AgentType = AgentType.rewoo
|
agent_type: AgentType = AgentType.rewoo
|
||||||
description: str = "RewooAgent for answering multi-step reasoning questions"
|
description: str = "RewooAgent for answering multi-step reasoning questions"
|
||||||
llm: Union[BaseLLM, Dict[str, BaseLLM]] # {"Planner": xxx, "Solver": xxx}
|
llm: Union[BaseLLM, Dict[str, BaseLLM]] # {"Planner": xxx, "Solver": xxx}
|
||||||
prompt_template: Dict[
|
prompt_template: Dict[
|
||||||
|
|
|
@ -1,5 +1,6 @@
|
||||||
from .base import BaseTool, ComponentTool
|
from .base import BaseTool, ComponentTool
|
||||||
from .google import GoogleSearchTool
|
from .google import GoogleSearchTool
|
||||||
|
from .llm import LLMTool
|
||||||
from .wikipedia import WikipediaTool
|
from .wikipedia import WikipediaTool
|
||||||
|
|
||||||
__all__ = ["BaseTool", "ComponentTool", "GoogleSearchTool", "WikipediaTool"]
|
__all__ = ["BaseTool", "ComponentTool", "GoogleSearchTool", "WikipediaTool", "LLMTool"]
|
||||||
|
|
36
knowledgehub/pipelines/tools/llm.py
Normal file
36
knowledgehub/pipelines/tools/llm.py
Normal file
|
@ -0,0 +1,36 @@
|
||||||
|
from typing import AnyStr, Optional, Type, Union
|
||||||
|
|
||||||
|
from pydantic import BaseModel, Field
|
||||||
|
|
||||||
|
from kotaemon.llms.chats.base import ChatLLM
|
||||||
|
from kotaemon.llms.chats.openai import AzureChatOpenAI
|
||||||
|
from kotaemon.llms.completions.base import LLM
|
||||||
|
|
||||||
|
from .base import BaseTool, ToolException
|
||||||
|
|
||||||
|
BaseLLM = Union[ChatLLM, LLM]
|
||||||
|
|
||||||
|
|
||||||
|
class LLMArgs(BaseModel):
|
||||||
|
query: str = Field(..., description="a search question or prompt")
|
||||||
|
|
||||||
|
|
||||||
|
class LLMTool(BaseTool):
|
||||||
|
name = "llm"
|
||||||
|
description = (
|
||||||
|
"A pretrained LLM like yourself. Useful when you need to act with "
|
||||||
|
"general world knowledge and common sense. Prioritize it when you "
|
||||||
|
"are confident in solving the problem "
|
||||||
|
"yourself. Input can be any instruction."
|
||||||
|
)
|
||||||
|
llm: BaseLLM = AzureChatOpenAI()
|
||||||
|
args_schema: Optional[Type[BaseModel]] = LLMArgs
|
||||||
|
|
||||||
|
def _run_tool(self, query: AnyStr) -> str:
|
||||||
|
output = None
|
||||||
|
try:
|
||||||
|
response = self.llm(query)
|
||||||
|
except ValueError:
|
||||||
|
raise ToolException("LLM Tool call failed")
|
||||||
|
output = response.text[0]
|
||||||
|
return output
|
|
@ -1,11 +1,12 @@
|
||||||
from unittest.mock import patch
|
from unittest.mock import patch
|
||||||
|
|
||||||
from kotaemon.llms.chats.openai import AzureChatOpenAI
|
from kotaemon.llms.chats.openai import AzureChatOpenAI
|
||||||
|
from kotaemon.pipelines.agents.react import ReactAgent
|
||||||
from kotaemon.pipelines.agents.rewoo import RewooAgent
|
from kotaemon.pipelines.agents.rewoo import RewooAgent
|
||||||
from kotaemon.pipelines.tools import GoogleSearchTool, WikipediaTool
|
from kotaemon.pipelines.tools import GoogleSearchTool, LLMTool, WikipediaTool
|
||||||
|
|
||||||
FINAL_RESPONSE_TEXT = "Hello Cinnamon AI!"
|
FINAL_RESPONSE_TEXT = "Hello Cinnamon AI!"
|
||||||
_openai_chat_completion_responses = [
|
_openai_chat_completion_responses_rewoo = [
|
||||||
{
|
{
|
||||||
"id": "chatcmpl-7qyuw6Q1CFCpcKsMdFkmUPUa7JP2x",
|
"id": "chatcmpl-7qyuw6Q1CFCpcKsMdFkmUPUa7JP2x",
|
||||||
"object": "chat.completion",
|
"object": "chat.completion",
|
||||||
|
@ -17,15 +18,24 @@ _openai_chat_completion_responses = [
|
||||||
"finish_reason": "stop",
|
"finish_reason": "stop",
|
||||||
"message": {
|
"message": {
|
||||||
"role": "assistant",
|
"role": "assistant",
|
||||||
"content": "#Plan1: Search for Cinnamon AI company on Google\n"
|
"content": text,
|
||||||
"#E1: google_search[Cinnamon AI company]\n"
|
|
||||||
"#Plan2: Search for Cinnamon on Wikipedia\n"
|
|
||||||
"#E2: wikipedia[Cinnamon]",
|
|
||||||
},
|
},
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"usage": {"completion_tokens": 9, "prompt_tokens": 10, "total_tokens": 19},
|
"usage": {"completion_tokens": 9, "prompt_tokens": 10, "total_tokens": 19},
|
||||||
},
|
}
|
||||||
|
for text in [
|
||||||
|
(
|
||||||
|
"#Plan1: Search for Cinnamon AI company on Google\n"
|
||||||
|
"#E1: google_search[Cinnamon AI company]\n"
|
||||||
|
"#Plan2: Search for Cinnamon on Wikipedia\n"
|
||||||
|
"#E2: wikipedia[Cinnamon]\n"
|
||||||
|
),
|
||||||
|
FINAL_RESPONSE_TEXT,
|
||||||
|
]
|
||||||
|
]
|
||||||
|
|
||||||
|
_openai_chat_completion_responses_react = [
|
||||||
{
|
{
|
||||||
"id": "chatcmpl-7qyuw6Q1CFCpcKsMdFkmUPUa7JP2x",
|
"id": "chatcmpl-7qyuw6Q1CFCpcKsMdFkmUPUa7JP2x",
|
||||||
"object": "chat.completion",
|
"object": "chat.completion",
|
||||||
|
@ -37,18 +47,36 @@ _openai_chat_completion_responses = [
|
||||||
"finish_reason": "stop",
|
"finish_reason": "stop",
|
||||||
"message": {
|
"message": {
|
||||||
"role": "assistant",
|
"role": "assistant",
|
||||||
"content": FINAL_RESPONSE_TEXT,
|
"content": text,
|
||||||
},
|
},
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"usage": {"completion_tokens": 9, "prompt_tokens": 10, "total_tokens": 19},
|
"usage": {"completion_tokens": 9, "prompt_tokens": 10, "total_tokens": 19},
|
||||||
},
|
}
|
||||||
|
for text in [
|
||||||
|
(
|
||||||
|
"I don't have prior knowledge about Cinnamon AI company, "
|
||||||
|
"so I should gather information about it.\n"
|
||||||
|
"Action: wikipedia\n"
|
||||||
|
"Action Input: Cinnamon AI company\n"
|
||||||
|
),
|
||||||
|
(
|
||||||
|
"The information retrieved from Wikipedia is not "
|
||||||
|
"about Cinnamon AI company, but about Blue Prism, "
|
||||||
|
"a British multinational software corporation. "
|
||||||
|
"I need to try another source to gather information "
|
||||||
|
"about Cinnamon AI company.\n"
|
||||||
|
"Action: google_search\n"
|
||||||
|
"Action Input: Cinnamon AI company\n"
|
||||||
|
),
|
||||||
|
FINAL_RESPONSE_TEXT,
|
||||||
|
]
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
@patch(
|
@patch(
|
||||||
"openai.api_resources.chat_completion.ChatCompletion.create",
|
"openai.api_resources.chat_completion.ChatCompletion.create",
|
||||||
side_effect=_openai_chat_completion_responses,
|
side_effect=_openai_chat_completion_responses_rewoo,
|
||||||
)
|
)
|
||||||
def test_rewoo_agent(openai_completion):
|
def test_rewoo_agent(openai_completion):
|
||||||
llm = AzureChatOpenAI(
|
llm = AzureChatOpenAI(
|
||||||
|
@ -58,11 +86,38 @@ def test_rewoo_agent(openai_completion):
|
||||||
deployment_name="dummy-q2",
|
deployment_name="dummy-q2",
|
||||||
temperature=0,
|
temperature=0,
|
||||||
)
|
)
|
||||||
|
plugins = [
|
||||||
plugins = [GoogleSearchTool(), WikipediaTool()]
|
GoogleSearchTool(),
|
||||||
|
WikipediaTool(),
|
||||||
|
LLMTool(llm=llm),
|
||||||
|
]
|
||||||
|
|
||||||
agent = RewooAgent(llm=llm, plugins=plugins)
|
agent = RewooAgent(llm=llm, plugins=plugins)
|
||||||
|
|
||||||
response = agent("Tell me about Cinnamon AI company")
|
response = agent("Tell me about Cinnamon AI company")
|
||||||
openai_completion.assert_called()
|
openai_completion.assert_called()
|
||||||
assert response.output == FINAL_RESPONSE_TEXT
|
assert response.output == FINAL_RESPONSE_TEXT
|
||||||
|
|
||||||
|
|
||||||
|
@patch(
|
||||||
|
"openai.api_resources.chat_completion.ChatCompletion.create",
|
||||||
|
side_effect=_openai_chat_completion_responses_react,
|
||||||
|
)
|
||||||
|
def test_react_agent(openai_completion):
|
||||||
|
llm = AzureChatOpenAI(
|
||||||
|
openai_api_base="https://dummy.openai.azure.com/",
|
||||||
|
openai_api_key="dummy",
|
||||||
|
openai_api_version="2023-03-15-preview",
|
||||||
|
deployment_name="dummy-q2",
|
||||||
|
temperature=0,
|
||||||
|
)
|
||||||
|
plugins = [
|
||||||
|
GoogleSearchTool(),
|
||||||
|
WikipediaTool(),
|
||||||
|
LLMTool(llm=llm),
|
||||||
|
]
|
||||||
|
agent = ReactAgent(llm=llm, plugins=plugins, max_iterations=4)
|
||||||
|
|
||||||
|
response = agent("Tell me about Cinnamon AI company")
|
||||||
|
openai_completion.assert_called()
|
||||||
|
assert response.output == FINAL_RESPONSE_TEXT
|
||||||
|
|
Loading…
Reference in New Issue
Block a user