Add file-based document store and vector store (#96)

* Modify docstore and vectorstore objects to be reconstructable
* Simplify the file docstore
* Use the simple file docstore and vector store in MVP
This commit is contained in:
Duc Nguyen (john) 2023-12-04 17:46:00 +07:00 committed by GitHub
parent 0ce3a8832f
commit 37c744b616
18 changed files with 324 additions and 149 deletions

View File

@ -73,10 +73,13 @@ class LCEmbeddingMixin:
return self._kwargs[name]
return getattr(self._obj, name)
def dump(self):
def dump(self, *args, **kwargs):
from theflow.utils.modules import serialize
params = {key: serialize(value) for key, value in self._kwargs.items()}
return {
"__type__": f"{self.__module__}.{self.__class__.__qualname__}",
**self._kwargs,
**params,
}
def specs(self, path: str):

View File

@ -82,10 +82,13 @@ class LlamaIndexDocTransformerMixin:
return self._kwargs[name]
return getattr(self._obj, name)
def dump(self):
def dump(self, *args, **kwargs):
from theflow.utils.modules import serialize
params = {key: serialize(value) for key, value in self._kwargs.items()}
return {
"__type__": f"{self.__module__}.{self.__class__.__qualname__}",
**self._kwargs,
**params,
}
def run(

View File

@ -1,7 +1,6 @@
from __future__ import annotations
import uuid
from pathlib import Path
from typing import Optional, Sequence, cast
from kotaemon.base import BaseComponent, Document, RetrievedDocument
@ -68,37 +67,6 @@ class VectorIndexing(BaseIndexing):
if self.doc_store:
self.doc_store.add(input_)
def save(
self,
path: str | Path,
vectorstore_fname: str = VECTOR_STORE_FNAME,
docstore_fname: str = DOC_STORE_FNAME,
):
"""Save the whole state of the indexing pipeline vector store and all
necessary information to disk
Args:
path (str): path to save the state
"""
if isinstance(path, str):
path = Path(path)
self.vector_store.save(path / vectorstore_fname)
if self.doc_store:
self.doc_store.save(path / docstore_fname)
def load(
self,
path: str | Path,
vectorstore_fname: str = VECTOR_STORE_FNAME,
docstore_fname: str = DOC_STORE_FNAME,
):
"""Load all information from disk to an object"""
if isinstance(path, str):
path = Path(path)
self.vector_store.load(path / vectorstore_fname)
if self.doc_store:
self.doc_store.load(path / docstore_fname)
class VectorRetrieval(BaseRetrieval):
"""Retrieve list of documents from vector store"""
@ -144,37 +112,6 @@ class VectorRetrieval(BaseRetrieval):
return result
def save(
self,
path: str | Path,
vectorstore_fname: str = VECTOR_STORE_FNAME,
docstore_fname: str = DOC_STORE_FNAME,
):
"""Save the whole state of the indexing pipeline vector store and all
necessary information to disk
Args:
path (str): path to save the state
"""
if isinstance(path, str):
path = Path(path)
self.vector_store.save(path / vectorstore_fname)
if self.doc_store:
self.doc_store.save(path / docstore_fname)
def load(
self,
path: str | Path,
vectorstore_fname: str = VECTOR_STORE_FNAME,
docstore_fname: str = DOC_STORE_FNAME,
):
"""Load all information from disk to an object"""
if isinstance(path, str):
path = Path(path)
self.vector_store.load(path / vectorstore_fname)
if self.doc_store:
self.doc_store.load(path / docstore_fname)
class TextVectorQA(BaseComponent):
retrieving_pipeline: BaseRetrieval

View File

@ -101,10 +101,13 @@ class LCChatMixin:
return self._kwargs[name]
return getattr(self._obj, name)
def dump(self):
def dump(self, *args, **kwargs):
from theflow.utils.modules import serialize
params = {key: serialize(value) for key, value in self._kwargs.items()}
return {
"__type__": f"{self.__module__}.{self.__class__.__qualname__}",
**self._kwargs,
**params,
}
def specs(self, path: str):

View File

@ -78,10 +78,13 @@ class LCCompletionMixin:
return self._kwargs[name]
return getattr(self._obj, name)
def dump(self):
def dump(self, *args, **kwargs):
from theflow.utils.modules import serialize
params = {key: serialize(value) for key, value in self._kwargs.items()}
return {
"__type__": f"{self.__module__}.{self.__class__.__qualname__}",
**self._kwargs,
**params,
}
def specs(self, path: str):

View File

@ -2,16 +2,24 @@ from .docstores import (
BaseDocumentStore,
ElasticsearchDocumentStore,
InMemoryDocumentStore,
SimpleFileDocumentStore,
)
from .vectorstores import (
BaseVectorStore,
ChromaVectorStore,
InMemoryVectorStore,
SimpleFileVectorStore,
)
from .vectorstores import BaseVectorStore, ChromaVectorStore, InMemoryVectorStore
__all__ = [
# Document stores
"BaseDocumentStore",
"InMemoryDocumentStore",
"ElasticsearchDocumentStore",
"SimpleFileDocumentStore",
# Vector stores
"BaseVectorStore",
"ChromaVectorStore",
"InMemoryVectorStore",
"SimpleFileVectorStore",
]

View File

@ -1,5 +1,11 @@
from .base import BaseDocumentStore
from .elasticsearch import ElasticsearchDocumentStore
from .in_memory import InMemoryDocumentStore
from .simple_file import SimpleFileDocumentStore
__all__ = ["BaseDocumentStore", "InMemoryDocumentStore", "ElasticsearchDocumentStore"]
__all__ = [
"BaseDocumentStore",
"InMemoryDocumentStore",
"ElasticsearchDocumentStore",
"SimpleFileDocumentStore",
]

View File

@ -1,8 +1,7 @@
from abc import ABC, abstractmethod
from pathlib import Path
from typing import List, Optional, Union
from ...base import Document
from kotaemon.base import Document
class BaseDocumentStore(ABC):
@ -46,13 +45,3 @@ class BaseDocumentStore(ABC):
def delete(self, ids: Union[List[str], str]):
"""Delete document by id"""
...
@abstractmethod
def save(self, path: Union[str, Path]):
"""Save document to path"""
...
@abstractmethod
def load(self, path: Union[str, Path]):
"""Load document store from path"""
...

View File

@ -1,7 +1,7 @@
from pathlib import Path
from typing import List, Optional, Union
from ...base import Document
from kotaemon.base import Document
from .base import BaseDocumentStore
MAX_DOCS_TO_GET = 10**4
@ -27,6 +27,8 @@ class ElasticsearchDocumentStore(BaseDocumentStore):
self.elasticsearch_url = elasticsearch_url
self.index_name = index_name
self.k1 = k1
self.b = b
# Create an Elasticsearch client instance
self.client = Elasticsearch(elasticsearch_url)
@ -160,10 +162,10 @@ class ElasticsearchDocumentStore(BaseDocumentStore):
self.client.delete_by_query(index=self.index_name, body=query)
self.client.indices.refresh(index=self.index_name)
def save(self, path: Union[str, Path]):
"""Save document to path"""
# not required for ElasticDocstore
def load(self, path: Union[str, Path]):
"""Load document store from path"""
# not required for ElasticDocstore
def __persist_flow__(self):
return {
"index_name": self.index_name,
"elasticsearch_url": self.elasticsearch_url,
"k1": self.k1,
"b": self.b,
}

View File

@ -2,7 +2,8 @@ import json
from pathlib import Path
from typing import List, Optional, Union
from ...base import Document
from kotaemon.base import Document
from .base import BaseDocumentStore
@ -74,3 +75,6 @@ class InMemoryDocumentStore(BaseDocumentStore):
with open(path) as f:
store = json.load(f)
self._store = {key: Document.from_dict(value) for key, value in store.items()}
def __persist_flow__(self):
return {}

View File

@ -0,0 +1,44 @@
from pathlib import Path
from typing import List, Optional, Union
from kotaemon.base import Document
from .in_memory import InMemoryDocumentStore
class SimpleFileDocumentStore(InMemoryDocumentStore):
"""Improve InMemoryDocumentStore by auto saving whenever the corpus is changed"""
def __init__(self, path: str | Path):
super().__init__()
self._path = path
if path is not None and Path(path).is_file():
self.load(path)
def add(
self,
docs: Union[Document, List[Document]],
ids: Optional[Union[List[str], str]] = None,
**kwargs,
):
"""Add document into document store
Args:
docs: list of documents to add
ids: specify the ids of documents to add or
use existing doc.doc_id
exist_ok: raise error when duplicate doc-id
found in the docstore (default to False)
"""
super().add(docs=docs, ids=ids, **kwargs)
self.save(self._path)
def delete(self, ids: Union[List[str], str]):
"""Delete document by id"""
super().delete(ids=ids)
self.save(self._path)
def __persist_flow__(self):
from theflow.utils.modules import serialize
return {"path": serialize(self._path)}

View File

@ -1,5 +1,11 @@
from .base import BaseVectorStore
from .chroma import ChromaVectorStore
from .in_memory import InMemoryVectorStore
from .simple_file import SimpleFileVectorStore
__all__ = ["BaseVectorStore", "ChromaVectorStore", "InMemoryVectorStore"]
__all__ = [
"BaseVectorStore",
"ChromaVectorStore",
"InMemoryVectorStore",
"SimpleFileVectorStore",
]

View File

@ -1,12 +1,14 @@
from __future__ import annotations
from abc import ABC, abstractmethod
from typing import Any, List, Optional, Tuple, Type, Union
from typing import Any, Optional
from llama_index.schema import NodeRelationship, RelatedNodeInfo
from llama_index.vector_stores.types import BasePydanticVectorStore
from llama_index.vector_stores.types import VectorStore as LIVectorStore
from llama_index.vector_stores.types import VectorStoreQuery
from kotaemon.base import Document, DocumentWithEmbedding
from kotaemon.base import DocumentWithEmbedding
class BaseVectorStore(ABC):
@ -17,10 +19,10 @@ class BaseVectorStore(ABC):
@abstractmethod
def add(
self,
embeddings: List[List[float]] | List[DocumentWithEmbedding],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
) -> List[str]:
embeddings: list[list[float]] | list[DocumentWithEmbedding],
metadatas: Optional[list[dict]] = None,
ids: Optional[list[str]] = None,
) -> list[str]:
"""Add vector embeddings to vector stores
Args:
@ -35,16 +37,7 @@ class BaseVectorStore(ABC):
...
@abstractmethod
def add_from_docs(self, docs: List[Document]):
"""Add vector embeddings to vector stores
Args:
docs: List of Document objects
"""
...
@abstractmethod
def delete(self, ids: List[str], **kwargs):
def delete(self, ids: list[str], **kwargs):
"""Delete vector embeddings from vector stores
Args:
@ -56,11 +49,11 @@ class BaseVectorStore(ABC):
@abstractmethod
def query(
self,
embedding: List[float],
embedding: list[float],
top_k: int = 1,
ids: Optional[List[str]] = None,
ids: Optional[list[str]] = None,
**kwargs,
) -> Tuple[List[List[float]], List[float], List[str]]:
) -> tuple[list[list[float]], list[float], list[str]]:
"""Return the top k most similar vector embeddings
Args:
@ -73,17 +66,9 @@ class BaseVectorStore(ABC):
"""
...
@abstractmethod
def load(self, *args, **kwargs):
pass
@abstractmethod
def save(self, *args, **kwargs):
pass
class LlamaIndexVectorStore(BaseVectorStore):
_li_class: Type[Union[LIVectorStore, BasePydanticVectorStore]]
_li_class: type[LIVectorStore | BasePydanticVectorStore]
def __init__(self, *args, **kwargs):
if self._li_class is None:
@ -104,12 +89,12 @@ class LlamaIndexVectorStore(BaseVectorStore):
def add(
self,
embeddings: List[List[float]] | List[DocumentWithEmbedding],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
embeddings: list[list[float]] | list[DocumentWithEmbedding],
metadatas: Optional[list[dict]] = None,
ids: Optional[list[str]] = None,
):
if isinstance(embeddings[0], list):
nodes = [
nodes: list[DocumentWithEmbedding] = [
DocumentWithEmbedding(embedding=embedding) for embedding in embeddings
]
else:
@ -126,20 +111,17 @@ class LlamaIndexVectorStore(BaseVectorStore):
return self._client.add(nodes=nodes)
def add_from_docs(self, docs: List[Document]):
return self._client.add(nodes=docs)
def delete(self, ids: List[str], **kwargs):
def delete(self, ids: list[str], **kwargs):
for id_ in ids:
self._client.delete(ref_doc_id=id_, **kwargs)
def query(
self,
embedding: List[float],
embedding: list[float],
top_k: int = 1,
ids: Optional[List[str]] = None,
ids: Optional[list[str]] = None,
**kwargs,
) -> Tuple[List[List[float]], List[float], List[str]]:
) -> tuple[list[list[float]], list[float], list[str]]:
output = self._client.query(
query=VectorStoreQuery(
query_embedding=embedding,

View File

@ -21,6 +21,17 @@ class ChromaVectorStore(LlamaIndexVectorStore):
flat_metadata: bool = True,
**kwargs: Any,
):
self._path = path
self._collection_name = collection_name
self._host = host
self._port = port
self._ssl = ssl
self._headers = headers
self._collection_kwargs = collection_kwargs
self._stores_text = stores_text
self._flat_metadata = flat_metadata
self._kwargs = kwargs
try:
import chromadb
except ImportError:
@ -70,8 +81,16 @@ class ChromaVectorStore(LlamaIndexVectorStore):
def count(self) -> int:
return self._collection.count()
def save(self, *args, **kwargs):
pass
def load(self, *args, **kwargs):
pass
def __persist_flow__(self):
return {
"path": self._path,
"collection_name": self._collection_name,
"host": self._host,
"port": self._port,
"ssl": self._ssl,
"headers": self._headers,
"collection_kwargs": self._collection_kwargs,
"stores_text": self._stores_text,
"flat_metadata": self._flat_metadata,
**self._kwargs,
}

View File

@ -1,5 +1,4 @@
"""Simple vector store index."""
from typing import Any, Optional, Type
import fsspec
@ -53,3 +52,11 @@ class InMemoryVectorStore(LlamaIndexVectorStore):
fs: An abstract super-class for pythonic file-systems
"""
self._client = self._client.from_persist_path(persist_path=load_path, fs=fs)
def __persist_flow__(self):
d = self._data.to_dict()
d["__type__"] = f"{self._data.__module__}.{self._data.__class__.__qualname__}"
return {
"data": d,
# "fs": self._fs,
}

View File

@ -0,0 +1,66 @@
"""Simple file vector store index."""
from pathlib import Path
from typing import Any, Optional, Type
import fsspec
from llama_index.vector_stores import SimpleVectorStore as LISimpleVectorStore
from llama_index.vector_stores.simple import SimpleVectorStoreData
from kotaemon.base import DocumentWithEmbedding
from .base import LlamaIndexVectorStore
class SimpleFileVectorStore(LlamaIndexVectorStore):
"""Similar to InMemoryVectorStore but is backed by file by default"""
_li_class: Type[LISimpleVectorStore] = LISimpleVectorStore
store_text: bool = False
def __init__(
self,
path: str | Path,
data: Optional[SimpleVectorStoreData] = None,
fs: Optional[fsspec.AbstractFileSystem] = None,
**kwargs: Any,
) -> None:
"""Initialize params."""
self._data = data or SimpleVectorStoreData()
self._fs = fs or fsspec.filesystem("file")
self._path = path
self._save_path = Path(path)
super().__init__(
data=data,
fs=fs,
**kwargs,
)
if self._save_path.is_file():
self._client = self._li_class.from_persist_path(
persist_path=str(self._save_path), fs=self._fs
)
def add(
self,
embeddings: list[list[float]] | list[DocumentWithEmbedding],
metadatas: Optional[list[dict]] = None,
ids: Optional[list[str]] = None,
):
r = super().add(embeddings, metadatas, ids)
self._client.persist(str(self._save_path), self._fs)
return r
def delete(self, ids: list[str], **kwargs):
r = super().delete(ids, **kwargs)
self._client.persist(str(self._save_path), self._fs)
return r
def __persist_flow__(self):
d = self._data.to_dict()
d["__type__"] = f"{self._data.__module__}.{self._data.__class__.__qualname__}"
return {
"data": d,
"path": str(self._path),
# "fs": self._fs,
}

View File

@ -1,10 +1,15 @@
import os
from unittest.mock import patch
import pytest
from elastic_transport import ApiResponseMeta
from kotaemon.base import Document
from kotaemon.storages import ElasticsearchDocumentStore, InMemoryDocumentStore
from kotaemon.storages import (
ElasticsearchDocumentStore,
InMemoryDocumentStore,
SimpleFileDocumentStore,
)
meta_success = ApiResponseMeta(
status=200,
@ -207,7 +212,7 @@ _elastic_search_responses = [
]
def test_simple_document_store_base_interfaces(tmp_path):
def test_inmemory_document_store_base_interfaces(tmp_path):
"""Test all interfaces of a a document store"""
store = InMemoryDocumentStore()
@ -260,6 +265,64 @@ def test_simple_document_store_base_interfaces(tmp_path):
store2.load(tmp_path / "store.json")
assert len(store2.get_all()) == 17, "Laded document store should have 17 documents"
os.remove(tmp_path / "store.json")
def test_simplefile_document_store_base_interfaces(tmp_path):
"""Test all interfaces of a a document store"""
path = tmp_path / "store.json"
store = SimpleFileDocumentStore(path=path)
docs = [
Document(text=f"Sample text {idx}", meta={"meta_key": f"meta_value_{idx}"})
for idx in range(10)
]
# Test add and get all
assert len(store.get_all()) == 0, "Document store should be empty"
store.add(docs)
assert len(store.get_all()) == 10, "Document store should have 10 documents"
# Test add with provided ids
store.add(docs=docs, ids=[f"doc_{idx}" for idx in range(10)])
assert len(store.get_all()) == 20, "Document store should have 20 documents"
# Test add without exist_ok
with pytest.raises(ValueError):
store.add(docs=docs, ids=[f"doc_{idx}" for idx in range(10)])
# Update ok with add exist_ok
store.add(docs=docs, ids=[f"doc_{idx}" for idx in range(10)], exist_ok=True)
assert len(store.get_all()) == 20, "Document store should have 20 documents"
# Test get with str id
matched = store.get(docs[0].doc_id)
assert len(matched) == 1, "Should return 1 document"
assert matched[0].text == docs[0].text, "Should return the correct document"
# Test get with list of ids
matched = store.get([docs[0].doc_id, docs[1].doc_id])
assert len(matched) == 2, "Should return 2 documents"
assert [doc.text for doc in matched] == [doc.text for doc in docs[:2]]
# Test delete with str id
store.delete(docs[0].doc_id)
assert len(store.get_all()) == 19, "Document store should have 19 documents"
# Test delete with list of ids
store.delete([docs[1].doc_id, docs[2].doc_id])
assert len(store.get_all()) == 17, "Document store should have 17 documents"
# Test save
assert path.exists(), "File should exist"
# Test load
store2 = SimpleFileDocumentStore(path=path)
assert len(store2.get_all()) == 17, "Laded document store should have 17 documents"
os.remove(path)
@patch(
"elastic_transport.Transport.perform_request",

View File

@ -1,7 +1,12 @@
import json
import os
from kotaemon.base import Document
from kotaemon.storages import ChromaVectorStore, InMemoryVectorStore
from kotaemon.base import DocumentWithEmbedding
from kotaemon.storages import (
ChromaVectorStore,
InMemoryVectorStore,
SimpleFileVectorStore,
)
class TestChromaVectorStore:
@ -24,11 +29,11 @@ class TestChromaVectorStore:
embeddings = [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]
metadatas = [{"a": 1, "b": 2}, {"a": 3, "b": 4}]
documents = [
Document(embedding=embedding, metadata=metadata)
DocumentWithEmbedding(embedding=embedding, metadata=metadata)
for embedding, metadata in zip(embeddings, metadatas)
]
assert db._collection.count() == 0, "Expected empty collection"
output = db.add_from_docs(documents)
output = db.add(documents)
assert len(output) == 2, "Expected outputing 2 ids"
assert db._collection.count() == 2, "Expected 2 added entries"
@ -69,10 +74,8 @@ class TestChromaVectorStore:
ids = ["1", "2", "3"]
db = ChromaVectorStore(path=str(tmp_path))
db.add(embeddings=embeddings, metadatas=metadatas, ids=ids)
db.save()
db2 = ChromaVectorStore(path=str(tmp_path))
db2.load()
assert (
db2._collection.count() == 3
), "load function does not load data completely"
@ -122,3 +125,30 @@ class TestInMemoryVectorStore:
0.5,
0.6,
], "load function does not load data completely"
class TestSimpleFileVectorStore:
def test_add_delete(self, tmp_path):
"""Test that delete func deletes correctly."""
embeddings = [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9]]
metadatas = [{"a": 1, "b": 2}, {"a": 3, "b": 4}, {"a": 5, "b": 6}]
ids = ["1", "2", "3"]
db = SimpleFileVectorStore(path=tmp_path / "test_save_load_delete.json")
db.add(embeddings=embeddings, metadatas=metadatas, ids=ids)
db.delete(["3"])
f = open(tmp_path / "test_save_load_delete.json")
data = json.load(f)
assert (
"1" and "2" in data["text_id_to_ref_doc_id"]
), "save function does not save data completely"
assert (
"3" not in data["text_id_to_ref_doc_id"]
), "delete function does not delete data completely"
db2 = SimpleFileVectorStore(path=tmp_path / "test_save_load_delete.json")
assert db2.get("2") == [
0.4,
0.5,
0.6,
], "load function does not load data completely"
os.remove(tmp_path / "test_save_load_delete.json")