Add file-based document store and vector store (#96)

* Modify docstore and vectorstore objects to be reconstructable
* Simplify the file docstore
* Use the simple file docstore and vector store in MVP
This commit is contained in:
Duc Nguyen (john)
2023-12-04 17:46:00 +07:00
committed by GitHub
parent 0ce3a8832f
commit 37c744b616
18 changed files with 324 additions and 149 deletions

View File

@@ -1,12 +1,14 @@
from __future__ import annotations
from abc import ABC, abstractmethod
from typing import Any, List, Optional, Tuple, Type, Union
from typing import Any, Optional
from llama_index.schema import NodeRelationship, RelatedNodeInfo
from llama_index.vector_stores.types import BasePydanticVectorStore
from llama_index.vector_stores.types import VectorStore as LIVectorStore
from llama_index.vector_stores.types import VectorStoreQuery
from kotaemon.base import Document, DocumentWithEmbedding
from kotaemon.base import DocumentWithEmbedding
class BaseVectorStore(ABC):
@@ -17,10 +19,10 @@ class BaseVectorStore(ABC):
@abstractmethod
def add(
self,
embeddings: List[List[float]] | List[DocumentWithEmbedding],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
) -> List[str]:
embeddings: list[list[float]] | list[DocumentWithEmbedding],
metadatas: Optional[list[dict]] = None,
ids: Optional[list[str]] = None,
) -> list[str]:
"""Add vector embeddings to vector stores
Args:
@@ -35,16 +37,7 @@ class BaseVectorStore(ABC):
...
@abstractmethod
def add_from_docs(self, docs: List[Document]):
"""Add vector embeddings to vector stores
Args:
docs: List of Document objects
"""
...
@abstractmethod
def delete(self, ids: List[str], **kwargs):
def delete(self, ids: list[str], **kwargs):
"""Delete vector embeddings from vector stores
Args:
@@ -56,11 +49,11 @@ class BaseVectorStore(ABC):
@abstractmethod
def query(
self,
embedding: List[float],
embedding: list[float],
top_k: int = 1,
ids: Optional[List[str]] = None,
ids: Optional[list[str]] = None,
**kwargs,
) -> Tuple[List[List[float]], List[float], List[str]]:
) -> tuple[list[list[float]], list[float], list[str]]:
"""Return the top k most similar vector embeddings
Args:
@@ -73,17 +66,9 @@ class BaseVectorStore(ABC):
"""
...
@abstractmethod
def load(self, *args, **kwargs):
pass
@abstractmethod
def save(self, *args, **kwargs):
pass
class LlamaIndexVectorStore(BaseVectorStore):
_li_class: Type[Union[LIVectorStore, BasePydanticVectorStore]]
_li_class: type[LIVectorStore | BasePydanticVectorStore]
def __init__(self, *args, **kwargs):
if self._li_class is None:
@@ -104,12 +89,12 @@ class LlamaIndexVectorStore(BaseVectorStore):
def add(
self,
embeddings: List[List[float]] | List[DocumentWithEmbedding],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
embeddings: list[list[float]] | list[DocumentWithEmbedding],
metadatas: Optional[list[dict]] = None,
ids: Optional[list[str]] = None,
):
if isinstance(embeddings[0], list):
nodes = [
nodes: list[DocumentWithEmbedding] = [
DocumentWithEmbedding(embedding=embedding) for embedding in embeddings
]
else:
@@ -126,20 +111,17 @@ class LlamaIndexVectorStore(BaseVectorStore):
return self._client.add(nodes=nodes)
def add_from_docs(self, docs: List[Document]):
return self._client.add(nodes=docs)
def delete(self, ids: List[str], **kwargs):
def delete(self, ids: list[str], **kwargs):
for id_ in ids:
self._client.delete(ref_doc_id=id_, **kwargs)
def query(
self,
embedding: List[float],
embedding: list[float],
top_k: int = 1,
ids: Optional[List[str]] = None,
ids: Optional[list[str]] = None,
**kwargs,
) -> Tuple[List[List[float]], List[float], List[str]]:
) -> tuple[list[list[float]], list[float], list[str]]:
output = self._client.query(
query=VectorStoreQuery(
query_embedding=embedding,