FairMQ/fairmq/FairMQStateMachine.cxx
Dennis Klein 72f5cdef58 Fix various warnings
-Wunused-parameter
-Wreorder
-Wsign-compare
-Wunused-private-field
2018-05-24 13:03:06 +02:00

779 lines
28 KiB
C++

/********************************************************************************
* Copyright (C) 2014 GSI Helmholtzzentrum fuer Schwerionenforschung GmbH *
* *
* This software is distributed under the terms of the *
* GNU Lesser General Public Licence (LGPL) version 3, *
* copied verbatim in the file "LICENSE" *
********************************************************************************/
/**
* FairMQStateMachine.cxx
*
* @since 2012-10-25
* @author D. Klein, A. Rybalchenko
*/
#include "FairMQStateMachine.h"
// Increase maximum number of boost::msm states (default is 10)
// This #define has to be before any msm header includes
#define FUSION_MAX_VECTOR_SIZE 20
#include <boost/mpl/for_each.hpp>
#include <boost/msm/back/state_machine.hpp>
#include <boost/msm/back/tools.hpp>
#include <boost/msm/back/metafunctions.hpp>
#include <boost/msm/front/state_machine_def.hpp>
#include <boost/msm/front/functor_row.hpp>
#include <boost/signals2.hpp> // signal/slot for onStateChange callbacks
#include <atomic>
#include <condition_variable>
#include <thread>
#include <chrono>
#include <unordered_map>
using namespace std;
namespace msmf = boost::msm::front;
namespace fair
{
namespace mq
{
namespace fsm
{
// defining events for the boost MSM state machine
struct INIT_DEVICE_E { string name() const { return "INIT_DEVICE"; } };
struct internal_DEVICE_READY_E { string name() const { return "internal_DEVICE_READY"; } };
struct INIT_TASK_E { string name() const { return "INIT_TASK"; } };
struct internal_READY_E { string name() const { return "internal_READY"; } };
struct RUN_E { string name() const { return "RUN"; } };
struct PAUSE_E { string name() const { return "PAUSE"; } };
struct STOP_E { string name() const { return "STOP"; } };
struct RESET_TASK_E { string name() const { return "RESET_TASK"; } };
struct RESET_DEVICE_E { string name() const { return "RESET_DEVICE"; } };
struct internal_IDLE_E { string name() const { return "internal_IDLE"; } };
struct END_E { string name() const { return "END"; } };
struct ERROR_FOUND_E { string name() const { return "ERROR_FOUND"; } };
// deactivate the warning for non-virtual destructor thrown in the boost library
#if defined(__clang__)
_Pragma("clang diagnostic push")
_Pragma("clang diagnostic ignored \"-Wnon-virtual-dtor\"")
#elif defined(__GNUC__) || defined(__GNUG__)
_Pragma("GCC diagnostic push")
_Pragma("GCC diagnostic ignored \"-Wnon-virtual-dtor\"")
#endif
// defining the boost MSM state machine
struct Machine_ : public msmf::state_machine_def<Machine_>
{
public:
Machine_()
: fWork()
, fWorkAvailableCondition()
, fWorkDoneCondition()
, fWorkMutex()
, fWorkerTerminated(false)
, fWorkActive(false)
, fWorkAvailable(false)
, fStateChangeSignal()
, fStateChangeSignalsMap()
, fTerminationRequested(false)
, fState()
, fWorkerThread()
{}
virtual ~Machine_()
{}
template<typename Event, typename FSM>
void on_entry(Event const&, FSM& fsm)
{
LOG(state) << "Starting FairMQ state machine";
fState = FairMQStateMachine::IDLE;
fsm.CallStateChangeCallbacks(FairMQStateMachine::IDLE);
// start a worker thread to execute user states in.
fsm.fWorkerThread = thread(&Machine_::Worker, &fsm);
}
template<typename Event, typename FSM>
void on_exit(Event const&, FSM& /*fsm*/)
{
LOG(state) << "Exiting FairMQ state machine";
}
// list of FSM states
struct OK_FSM : public msmf::state<> {};
struct ERROR_FSM : public msmf::terminate_state<> {};
struct IDLE_FSM : public msmf::state<> {};
struct INITIALIZING_DEVICE_FSM : public msmf::state<> {};
struct DEVICE_READY_FSM : public msmf::state<> {};
struct INITIALIZING_TASK_FSM : public msmf::state<> {};
struct READY_FSM : public msmf::state<> {};
struct RUNNING_FSM : public msmf::state<> {};
struct PAUSED_FSM : public msmf::state<> {};
struct RESETTING_TASK_FSM : public msmf::state<> {};
struct RESETTING_DEVICE_FSM : public msmf::state<> {};
struct EXITING_FSM : public msmf::state<> {};
// initial states
using initial_state = boost::mpl::vector<IDLE_FSM, OK_FSM>;
// actions
struct IdleFct
{
template<typename EVT, typename FSM, typename SourceState, typename TargetState>
void operator()(EVT const&, FSM& fsm, SourceState&, TargetState&)
{
LOG(state) << "Entering IDLE state";
fsm.fState = FairMQStateMachine::IDLE;
}
};
struct InitDeviceFct
{
template<typename EVT, typename FSM, typename SourceState, typename TargetState>
void operator()(EVT const&, FSM& fsm, SourceState&, TargetState&)
{
fsm.fState = FairMQStateMachine::INITIALIZING_DEVICE;
unique_lock<mutex> lock(fsm.fWorkMutex);
while (fsm.fWorkActive)
{
fsm.fWorkDoneCondition.wait(lock);
}
fsm.fWorkAvailable = true;
LOG(state) << "Entering INITIALIZING DEVICE state";
fsm.fWork = fsm.fInitWrapperHandler;
fsm.fWorkAvailableCondition.notify_one();
}
};
struct DeviceReadyFct
{
template<typename EVT, typename FSM, typename SourceState, typename TargetState>
void operator()(EVT const&, FSM& fsm, SourceState&, TargetState&)
{
LOG(state) << "Entering DEVICE READY state";
fsm.fState = FairMQStateMachine::DEVICE_READY;
}
};
struct InitTaskFct
{
template<typename EVT, typename FSM, typename SourceState, typename TargetState>
void operator()(EVT const&, FSM& fsm, SourceState&, TargetState&)
{
fsm.fState = FairMQStateMachine::INITIALIZING_TASK;
unique_lock<mutex> lock(fsm.fWorkMutex);
while (fsm.fWorkActive)
{
fsm.fWorkDoneCondition.wait(lock);
}
fsm.fWorkAvailable = true;
LOG(state) << "Entering INITIALIZING TASK state";
fsm.fWork = fsm.fInitTaskWrapperHandler;
fsm.fWorkAvailableCondition.notify_one();
}
};
struct ReadyFct
{
template<typename EVT, typename FSM, typename SourceState, typename TargetState>
void operator()(EVT const&, FSM& fsm, SourceState&, TargetState&)
{
LOG(state) << "Entering READY state";
fsm.fState = FairMQStateMachine::READY;
}
};
struct RunFct
{
template<typename EVT, typename FSM, typename SourceState, typename TargetState>
void operator()(EVT const&, FSM& fsm, SourceState&, TargetState&)
{
fsm.fState = FairMQStateMachine::RUNNING;
unique_lock<mutex> lock(fsm.fWorkMutex);
while (fsm.fWorkActive)
{
fsm.fWorkDoneCondition.wait(lock);
}
fsm.fWorkAvailable = true;
LOG(state) << "Entering RUNNING state";
fsm.fWork = fsm.fRunWrapperHandler;
fsm.fWorkAvailableCondition.notify_one();
}
};
struct PauseFct
{
template<typename EVT, typename FSM, typename SourceState, typename TargetState>
void operator()(EVT const&, FSM& fsm, SourceState&, TargetState&)
{
fsm.fState = FairMQStateMachine::PAUSED;
fsm.fUnblockHandler();
unique_lock<mutex> lock(fsm.fWorkMutex);
while (fsm.fWorkActive)
{
fsm.fWorkDoneCondition.wait(lock);
}
fsm.fWorkAvailable = true;
LOG(state) << "Entering PAUSED state";
fsm.fWork = fsm.fPauseWrapperHandler;
fsm.fWorkAvailableCondition.notify_one();
}
};
struct ResumeFct
{
template<typename EVT, typename FSM, typename SourceState, typename TargetState>
void operator()(EVT const&, FSM& fsm, SourceState&, TargetState&)
{
fsm.fState = FairMQStateMachine::RUNNING;
unique_lock<mutex> lock(fsm.fWorkMutex);
while (fsm.fWorkActive)
{
fsm.fWorkDoneCondition.wait(lock);
}
fsm.fWorkAvailable = true;
LOG(state) << "Entering RUNNING state";
fsm.fWork = fsm.fRunWrapperHandler;
fsm.fWorkAvailableCondition.notify_one();
}
};
struct StopFct
{
template<typename EVT, typename FSM, typename SourceState, typename TargetState>
void operator()(EVT const&, FSM& fsm, SourceState&, TargetState&)
{
fsm.fState = FairMQStateMachine::READY;
fsm.fUnblockHandler();
unique_lock<mutex> lock(fsm.fWorkMutex);
while (fsm.fWorkActive)
{
fsm.fWorkDoneCondition.wait(lock);
}
LOG(state) << "Entering READY state";
}
};
struct InternalStopFct
{
template<typename EVT, typename FSM, typename SourceState, typename TargetState>
void operator()(EVT const&, FSM& fsm, SourceState&, TargetState&)
{
fsm.fState = FairMQStateMachine::READY;
fsm.fUnblockHandler();
LOG(state) << "RUNNING state finished without an external event, entering READY state";
}
};
struct ResetTaskFct
{
template<typename EVT, typename FSM, typename SourceState, typename TargetState>
void operator()(EVT const&, FSM& fsm, SourceState&, TargetState&)
{
fsm.fState = FairMQStateMachine::RESETTING_TASK;
unique_lock<mutex> lock(fsm.fWorkMutex);
while (fsm.fWorkActive)
{
fsm.fWorkDoneCondition.wait(lock);
}
fsm.fWorkAvailable = true;
LOG(state) << "Entering RESETTING TASK state";
fsm.fWork = fsm.fResetTaskWrapperHandler;
fsm.fWorkAvailableCondition.notify_one();
}
};
struct ResetDeviceFct
{
template<typename EVT, typename FSM, typename SourceState, typename TargetState>
void operator()(EVT const&, FSM& fsm, SourceState&, TargetState&)
{
fsm.fState = FairMQStateMachine::RESETTING_DEVICE;
unique_lock<mutex> lock(fsm.fWorkMutex);
while (fsm.fWorkActive)
{
fsm.fWorkDoneCondition.wait(lock);
}
fsm.fWorkAvailable = true;
LOG(state) << "Entering RESETTING DEVICE state";
fsm.fWork = fsm.fResetWrapperHandler;
fsm.fWorkAvailableCondition.notify_one();
}
};
struct ExitingFct
{
template<typename EVT, typename FSM, typename SourceState, typename TargetState>
void operator()(EVT const&, FSM& fsm, SourceState&, TargetState&)
{
LOG(state) << "Entering EXITING state";
fsm.fState = FairMQStateMachine::EXITING;
fsm.fTerminationRequested = true;
fsm.CallStateChangeCallbacks(FairMQStateMachine::EXITING);
// terminate worker thread
{
lock_guard<mutex> lock(fsm.fWorkMutex);
fsm.fWorkerTerminated = true;
fsm.fWorkAvailableCondition.notify_one();
}
// join the worker thread (executing user states)
if (fsm.fWorkerThread.joinable())
{
fsm.fWorkerThread.join();
}
fsm.fExitHandler();
}
};
struct ErrorFoundFct
{
template<typename EVT, typename FSM, typename SourceState, typename TargetState>
void operator()(EVT const&, FSM& fsm, SourceState&, TargetState&)
{
LOG(state) << "Entering ERROR state";
fsm.fState = FairMQStateMachine::Error;
fsm.CallStateChangeCallbacks(FairMQStateMachine::Error);
}
};
// Transition table for Machine_
struct transition_table : boost::mpl::vector<
// Start Event Next Action Guard
msmf::Row<IDLE_FSM, INIT_DEVICE_E, INITIALIZING_DEVICE_FSM, InitDeviceFct, msmf::none>,
msmf::Row<IDLE_FSM, END_E, EXITING_FSM, ExitingFct, msmf::none>,
msmf::Row<INITIALIZING_DEVICE_FSM, internal_DEVICE_READY_E, DEVICE_READY_FSM, DeviceReadyFct, msmf::none>,
msmf::Row<DEVICE_READY_FSM, INIT_TASK_E, INITIALIZING_TASK_FSM, InitTaskFct, msmf::none>,
msmf::Row<DEVICE_READY_FSM, RESET_DEVICE_E, RESETTING_DEVICE_FSM, ResetDeviceFct, msmf::none>,
msmf::Row<INITIALIZING_TASK_FSM, internal_READY_E, READY_FSM, ReadyFct, msmf::none>,
msmf::Row<READY_FSM, RUN_E, RUNNING_FSM, RunFct, msmf::none>,
msmf::Row<READY_FSM, RESET_TASK_E, RESETTING_TASK_FSM, ResetTaskFct, msmf::none>,
msmf::Row<RUNNING_FSM, PAUSE_E, PAUSED_FSM, PauseFct, msmf::none>,
msmf::Row<RUNNING_FSM, STOP_E, READY_FSM, StopFct, msmf::none>,
msmf::Row<RUNNING_FSM, internal_READY_E, READY_FSM, InternalStopFct, msmf::none>,
msmf::Row<PAUSED_FSM, RUN_E, RUNNING_FSM, ResumeFct, msmf::none>,
msmf::Row<RESETTING_TASK_FSM, internal_DEVICE_READY_E, DEVICE_READY_FSM, DeviceReadyFct, msmf::none>,
msmf::Row<RESETTING_DEVICE_FSM, internal_IDLE_E, IDLE_FSM, IdleFct, msmf::none>,
msmf::Row<OK_FSM, ERROR_FOUND_E, ERROR_FSM, ErrorFoundFct, msmf::none>>
{};
// replaces the default no-transition response.
template<typename FSM, typename Event>
void no_transition(Event const& e, FSM&, int state)
{
using recursive_stt = typename boost::msm::back::recursive_get_transition_table<FSM>::type;
using all_states = typename boost::msm::back::generate_state_set<recursive_stt>::type;
string stateName;
boost::mpl::for_each<all_states, boost::msm::wrap<boost::mpl::placeholders::_1>>(boost::msm::back::get_state_name<recursive_stt>(stateName, state));
stateName = stateName.substr(24);
size_t pos = stateName.find("_FSME");
stateName.erase(pos);
if (stateName == "1RUNNING" || stateName == "6DEVICE_READY" || stateName == "0PAUSED" || stateName == "8RESETTING_TASK" || stateName == "0RESETTING_DEVICE")
{
stateName = stateName.substr(1);
}
if (stateName != "OK")
{
LOG(state) << "No transition from state " << stateName << " on event " << e.name();
}
// LOG(state) << "no transition from state " << GetStateName(state) << " (" << state << ") on event " << e.name();
}
static string GetStateName(const int state)
{
switch(state)
{
case FairMQStateMachine::OK:
return "OK";
case FairMQStateMachine::Error:
return "Error";
case FairMQStateMachine::IDLE:
return "IDLE";
case FairMQStateMachine::INITIALIZING_DEVICE:
return "INITIALIZING_DEVICE";
case FairMQStateMachine::DEVICE_READY:
return "DEVICE_READY";
case FairMQStateMachine::INITIALIZING_TASK:
return "INITIALIZING_TASK";
case FairMQStateMachine::READY:
return "READY";
case FairMQStateMachine::RUNNING:
return "RUNNING";
case FairMQStateMachine::PAUSED:
return "PAUSED";
case FairMQStateMachine::RESETTING_TASK:
return "RESETTING_TASK";
case FairMQStateMachine::RESETTING_DEVICE:
return "RESETTING_DEVICE";
case FairMQStateMachine::EXITING:
return "EXITING";
default:
return "requested name for non-existent state...";
}
}
void CallStateChangeCallbacks(const FairMQStateMachine::State state) const
{
if (!fStateChangeSignal.empty())
{
fStateChangeSignal(state);
}
}
function<void(void)> fInitWrapperHandler;
function<void(void)> fInitTaskWrapperHandler;
function<void(void)> fRunWrapperHandler;
function<void(void)> fPauseWrapperHandler;
function<void(void)> fResetWrapperHandler;
function<void(void)> fResetTaskWrapperHandler;
function<void(void)> fExitHandler;
function<void(void)> fUnblockHandler;
// function to execute user states in a worker thread
function<void(void)> fWork;
condition_variable fWorkAvailableCondition;
condition_variable fWorkDoneCondition;
mutex fWorkMutex;
bool fWorkerTerminated;
bool fWorkActive;
bool fWorkAvailable;
boost::signals2::signal<void(const FairMQStateMachine::State)> fStateChangeSignal;
unordered_map<string, boost::signals2::connection> fStateChangeSignalsMap;
atomic<bool> fTerminationRequested;
atomic<FairMQStateMachine::State> fState;
private:
void Worker()
{
while (true)
{
{
unique_lock<mutex> lock(fWorkMutex);
// Wait for work to be done.
while (!fWorkAvailable && !fWorkerTerminated)
{
fWorkAvailableCondition.wait(lock);
}
if (fWorkerTerminated)
{
break;
}
fWorkActive = true;
}
fWork();
{
lock_guard<mutex> lock(fWorkMutex);
fWorkActive = false;
fWorkAvailable = false;
fWorkDoneCondition.notify_one();
}
CallStateChangeCallbacks(fState);
}
}
// run state handlers in a separate thread
thread fWorkerThread;
}; // Machine_
using FairMQFSM = boost::msm::back::state_machine<Machine_>;
// reactivate the warning for non-virtual destructor
#if defined(__clang__)
_Pragma("clang diagnostic pop")
#elif defined(__GNUC__) || defined(__GNUG__)
_Pragma("GCC diagnostic pop")
#endif
} // namespace fsm
} // namespace mq
} // namespace fair
using namespace fair::mq::fsm;
FairMQStateMachine::FairMQStateMachine()
: fChangeStateMutex()
, fFsm(new FairMQFSM)
{
static_pointer_cast<FairMQFSM>(fFsm)->fInitWrapperHandler = bind(&FairMQStateMachine::InitWrapper, this);
static_pointer_cast<FairMQFSM>(fFsm)->fInitTaskWrapperHandler = bind(&FairMQStateMachine::InitTaskWrapper, this);
static_pointer_cast<FairMQFSM>(fFsm)->fRunWrapperHandler = bind(&FairMQStateMachine::RunWrapper, this);
static_pointer_cast<FairMQFSM>(fFsm)->fPauseWrapperHandler = bind(&FairMQStateMachine::PauseWrapper, this);
static_pointer_cast<FairMQFSM>(fFsm)->fResetWrapperHandler = bind(&FairMQStateMachine::ResetWrapper, this);
static_pointer_cast<FairMQFSM>(fFsm)->fResetTaskWrapperHandler = bind(&FairMQStateMachine::ResetTaskWrapper, this);
static_pointer_cast<FairMQFSM>(fFsm)->fExitHandler = bind(&FairMQStateMachine::Exit, this);
static_pointer_cast<FairMQFSM>(fFsm)->fUnblockHandler = bind(&FairMQStateMachine::Unblock, this);
static_pointer_cast<FairMQFSM>(fFsm)->start();
}
FairMQStateMachine::~FairMQStateMachine()
{
static_pointer_cast<FairMQFSM>(fFsm)->stop();
}
int FairMQStateMachine::GetInterfaceVersion() const
{
return FAIRMQ_INTERFACE_VERSION;
}
bool FairMQStateMachine::ChangeState(int event)
{
try
{
switch (event)
{
case INIT_DEVICE:
{
lock_guard<mutex> lock(fChangeStateMutex);
static_pointer_cast<FairMQFSM>(fFsm)->process_event(INIT_DEVICE_E());
return true;
}
case internal_DEVICE_READY:
{
lock_guard<mutex> lock(fChangeStateMutex);
static_pointer_cast<FairMQFSM>(fFsm)->process_event(internal_DEVICE_READY_E());
return true;
}
case INIT_TASK:
{
lock_guard<mutex> lock(fChangeStateMutex);
static_pointer_cast<FairMQFSM>(fFsm)->process_event(INIT_TASK_E());
return true;
}
case internal_READY:
{
lock_guard<mutex> lock(fChangeStateMutex);
static_pointer_cast<FairMQFSM>(fFsm)->process_event(internal_READY_E());
return true;
}
case RUN:
{
lock_guard<mutex> lock(fChangeStateMutex);
static_pointer_cast<FairMQFSM>(fFsm)->process_event(RUN_E());
return true;
}
case PAUSE:
{
lock_guard<mutex> lock(fChangeStateMutex);
static_pointer_cast<FairMQFSM>(fFsm)->process_event(PAUSE_E());
return true;
}
case STOP:
{
lock_guard<mutex> lock(fChangeStateMutex);
static_pointer_cast<FairMQFSM>(fFsm)->process_event(STOP_E());
return true;
}
case RESET_DEVICE:
{
lock_guard<mutex> lock(fChangeStateMutex);
static_pointer_cast<FairMQFSM>(fFsm)->process_event(RESET_DEVICE_E());
return true;
}
case RESET_TASK:
{
lock_guard<mutex> lock(fChangeStateMutex);
static_pointer_cast<FairMQFSM>(fFsm)->process_event(RESET_TASK_E());
return true;
}
case internal_IDLE:
{
lock_guard<mutex> lock(fChangeStateMutex);
static_pointer_cast<FairMQFSM>(fFsm)->process_event(internal_IDLE_E());
return true;
}
case END:
{
lock_guard<mutex> lock(fChangeStateMutex);
static_pointer_cast<FairMQFSM>(fFsm)->process_event(END_E());
return true;
}
case ERROR_FOUND:
{
lock_guard<mutex> lock(fChangeStateMutex);
static_pointer_cast<FairMQFSM>(fFsm)->process_event(ERROR_FOUND_E());
return true;
}
default:
{
LOG(error) << "Requested state transition with an unsupported event: " << event << endl
<< "Supported are: INIT_DEVICE, INIT_TASK, RUN, PAUSE, STOP, RESET_TASK, RESET_DEVICE, END, ERROR_FOUND";
return false;
}
}
}
catch (exception& e)
{
LOG(error) << "Exception in FairMQStateMachine::ChangeState(): " << e.what();
exit(EXIT_FAILURE);
}
return false;
}
bool FairMQStateMachine::ChangeState(const string& event)
{
return ChangeState(GetEventNumber(event));
}
void FairMQStateMachine::WaitForEndOfState(int event)
{
try
{
switch (event)
{
case INIT_DEVICE:
case INIT_TASK:
case RUN:
case RESET_TASK:
case RESET_DEVICE:
{
unique_lock<mutex> lock(static_pointer_cast<FairMQFSM>(fFsm)->fWorkMutex);
while (static_pointer_cast<FairMQFSM>(fFsm)->fWorkActive || static_pointer_cast<FairMQFSM>(fFsm)->fWorkAvailable)
{
static_pointer_cast<FairMQFSM>(fFsm)->fWorkDoneCondition.wait_for(lock, chrono::seconds(1));
}
break;
}
default:
LOG(error) << "Requested state is either synchronous or does not exist.";
break;
}
}
catch (exception& e)
{
LOG(error) << "Exception in FairMQStateMachine::WaitForEndOfState(): " << e.what();
}
}
void FairMQStateMachine::WaitForEndOfState(const string& event)
{
return WaitForEndOfState(GetEventNumber(event));
}
bool FairMQStateMachine::WaitForEndOfStateForMs(int event, int durationInMs)
{
try
{
switch (event)
{
case INIT_DEVICE:
case INIT_TASK:
case RUN:
case RESET_TASK:
case RESET_DEVICE:
{
unique_lock<mutex> lock(static_pointer_cast<FairMQFSM>(fFsm)->fWorkMutex);
while (static_pointer_cast<FairMQFSM>(fFsm)->fWorkActive || static_pointer_cast<FairMQFSM>(fFsm)->fWorkAvailable)
{
static_pointer_cast<FairMQFSM>(fFsm)->fWorkDoneCondition.wait_for(lock, chrono::milliseconds(durationInMs));
if (static_pointer_cast<FairMQFSM>(fFsm)->fWorkActive)
{
return false;
}
}
return true;
}
default:
LOG(error) << "Requested state is either synchronous or does not exist.";
return false;
}
}
catch (exception& e)
{
LOG(error) << "Exception in FairMQStateMachine::WaitForEndOfStateForMs(): " << e.what();
}
return false;
}
bool FairMQStateMachine::WaitForEndOfStateForMs(const string& event, int durationInMs)
{
return WaitForEndOfStateForMs(GetEventNumber(event), durationInMs);
}
void FairMQStateMachine::SubscribeToStateChange(const string& key, function<void(const State)> callback)
{
static_pointer_cast<FairMQFSM>(fFsm)->fStateChangeSignalsMap.insert({key, static_pointer_cast<FairMQFSM>(fFsm)->fStateChangeSignal.connect(callback)});
}
void FairMQStateMachine::UnsubscribeFromStateChange(const string& key)
{
if (static_pointer_cast<FairMQFSM>(fFsm)->fStateChangeSignalsMap.count(key))
{
static_pointer_cast<FairMQFSM>(fFsm)->fStateChangeSignalsMap.at(key).disconnect();
static_pointer_cast<FairMQFSM>(fFsm)->fStateChangeSignalsMap.erase(key);
}
}
void FairMQStateMachine::CallStateChangeCallbacks(const State state) const
{
static_pointer_cast<FairMQFSM>(fFsm)->CallStateChangeCallbacks(state);
}
string FairMQStateMachine::GetCurrentStateName() const
{
return static_pointer_cast<FairMQFSM>(fFsm)->GetStateName(static_pointer_cast<FairMQFSM>(fFsm)->fState);
}
int FairMQStateMachine::GetCurrentState() const
{
return static_pointer_cast<FairMQFSM>(fFsm)->fState;
}
bool FairMQStateMachine::CheckCurrentState(int state) const
{
return state == static_pointer_cast<FairMQFSM>(fFsm)->fState;
}
bool FairMQStateMachine::CheckCurrentState(string state) const
{
return state == GetCurrentStateName();
}
bool FairMQStateMachine::Terminated()
{
return static_pointer_cast<FairMQFSM>(fFsm)->fTerminationRequested;
}
int FairMQStateMachine::GetEventNumber(const string& event)
{
if (event == "INIT_DEVICE") return INIT_DEVICE;
if (event == "INIT_TASK") return INIT_TASK;
if (event == "RUN") return RUN;
if (event == "PAUSE") return PAUSE;
if (event == "STOP") return STOP;
if (event == "RESET_DEVICE") return RESET_DEVICE;
if (event == "RESET_TASK") return RESET_TASK;
if (event == "END") return END;
if (event == "ERROR_FOUND") return ERROR_FOUND;
LOG(error) << "Requested number for non-existent event... " << event << endl
<< "Supported are: INIT_DEVICE, INIT_TASK, RUN, PAUSE, STOP, RESET_DEVICE, RESET_TASK, END, ERROR_FOUND";
return -1;
}