FairMQ/fairmq/ofi/Socket.cxx
2019-03-06 14:23:08 +01:00

780 lines
26 KiB
C++

/********************************************************************************
* Copyright (C) 2018 GSI Helmholtzzentrum fuer Schwerionenforschung GmbH *
* *
* This software is distributed under the terms of the *
* GNU Lesser General Public Licence (LGPL) version 3, *
* copied verbatim in the file "LICENSE" *
********************************************************************************/
#include <fairmq/ofi/ControlMessages.h>
#include <fairmq/ofi/Socket.h>
#include <fairmq/ofi/TransportFactory.h>
#include <fairmq/Tools.h>
#include <FairMQLogger.h>
#include <arpa/inet.h>
#include <asiofi.hpp>
#include <boost/asio/buffer.hpp>
#include <cstring>
#include <netinet/in.h>
#include <sstream>
#include <string.h>
#include <sys/socket.h>
#include <zmq.h>
#include <mutex>
#include <condition_variable>
namespace fair
{
namespace mq
{
namespace ofi
{
using namespace std;
Socket::Socket(Context& context, const string& type, const string& name, const string& id /*= ""*/)
: fControlSocket(nullptr)
// , fMonitorSocket(nullptr)
, fPassiveDataEndpoint(nullptr)
, fDataEndpoint(nullptr)
, fId(id + "." + name + "." + type)
, fBytesTx(0)
, fBytesRx(0)
, fMessagesTx(0)
, fMessagesRx(0)
, fContext(context)
, fIoStrand(fContext.GetIoContext())
, fSndTimeout(100)
, fRcvTimeout(100)
{
if (type != "pair") {
throw SocketError{tools::ToString("Socket type '", type, "' not implemented for ofi transport.")};
} else {
fControlSocket = zmq_socket(fContext.GetZmqContext(), ZMQ_PAIR);
if (fControlSocket == nullptr)
throw SocketError{tools::ToString("Failed creating zmq meta socket ", fId, ", reason: ", zmq_strerror(errno))};
if (zmq_setsockopt(fControlSocket, ZMQ_IDENTITY, fId.c_str(), fId.length()) != 0)
throw SocketError{tools::ToString("Failed setting ZMQ_IDENTITY socket option, reason: ", zmq_strerror(errno))};
// Tell socket to try and send/receive outstanding messages for <linger> milliseconds before terminating.
// Default value for ZeroMQ is -1, which is to wait forever.
int linger = 1000;
if (zmq_setsockopt(fControlSocket, ZMQ_LINGER, &linger, sizeof(linger)) != 0)
throw SocketError{tools::ToString("Failed setting ZMQ_LINGER socket option, reason: ", zmq_strerror(errno))};
// TODO enable again and implement retries
// if (zmq_setsockopt(fControlSocket, ZMQ_SNDTIMEO, &fSndTimeout, sizeof(fSndTimeout)) != 0)
// throw SocketError{tools::ToString("Failed setting ZMQ_SNDTIMEO socket option, reason: ", zmq_strerror(errno))};
//
// if (zmq_setsockopt(fControlSocket, ZMQ_RCVTIMEO, &fRcvTimeout, sizeof(fRcvTimeout)) != 0)
// throw SocketError{tools::ToString("Failed setting ZMQ_RCVTIMEO socket option, reason: ", zmq_strerror(errno))};
// fMonitorSocket = zmq_socket(fContext.GetZmqContext(), ZMQ_PAIR);
//
// if (fMonitorSocket == nullptr)
// throw SocketError{tools::ToString("Failed creating zmq monitor socket ", fId, ", reason: ", zmq_strerror(errno))};
//
// auto mon_addr = tools::ToString("inproc://", fId);
// if (zmq_socket_monitor(fControlSocket, mon_addr.c_str(), ZMQ_EVENT_ACCEPTED | ZMQ_EVENT_CONNECTED) < 0)
// throw SocketError{tools::ToString("Failed setting up monitor on meta socket, reason: ", zmq_strerror(errno))};
//
// if (zmq_connect(fMonitorSocket, mon_addr.c_str()) != 0)
// throw SocketError{tools::ToString("Failed connecting monitor socket to meta socket, reason: ", zmq_strerror(errno))};
}
}
auto Socket::Bind(const string& address) -> bool
try {
auto addr = Context::VerifyAddress(address);
BindControlSocket(addr);
// TODO make data port choice more robust
addr.Port += 555;
fLocalDataAddr = addr;
BindDataEndpoint();
return true;
}
catch (const SilentSocketError& e)
{
// do not print error in this case, this is handled by FairMQDevice
// in case no connection could be established after trying a number of random ports from a range.
return false;
}
catch (const SocketError& e)
{
LOG(error) << "OFI transport: " << e.what();
return false;
}
auto Socket::Connect(const string& address) -> bool
{
auto addr = Context::VerifyAddress(address);
ConnectControlSocket(addr);
ProcessControlMessage(
StaticUniquePtrDowncast<DataAddressAnnouncement>(ReceiveControlMessage()));
ConnectDataEndpoint();
}
auto Socket::BindControlSocket(Context::Address address) -> void
{
auto addr = tools::ToString("tcp://", address.Ip, ":", address.Port);
if (zmq_bind(fControlSocket, addr.c_str()) != 0) {
if (errno == EADDRINUSE) throw SilentSocketError("EADDRINUSE");
throw SocketError(tools::ToString("Failed binding control socket ", fId, ", reason: ", zmq_strerror(errno)));
}
LOG(debug) << "OFI transport (" << fId << "): control band bound to " << address;
}
auto Socket::BindDataEndpoint() -> void
{
assert(!fPassiveDataEndpoint);
assert(!fDataEndpoint);
std::mutex m;
std::condition_variable cv;
bool completed(false);
fPassiveDataEndpoint = fContext.MakeOfiPassiveEndpoint(fLocalDataAddr);
fPassiveDataEndpoint->listen([&](fid_t /*handle*/, asiofi::info&& info) {
LOG(debug) << "OFI transport (" << fId << "): data band connection request received. Accepting ...";
fDataEndpoint = fContext.MakeOfiConnectedEndpoint(info);
fDataEndpoint->enable();
fDataEndpoint->accept([&]() {
{
std::unique_lock<std::mutex> lk(m);
completed = true;
}
cv.notify_one();
});
});
LOG(debug) << "OFI transport (" << fId << "): data band bound to " << fLocalDataAddr;
AnnounceDataAddress();
{
std::unique_lock<std::mutex> lk(m);
cv.wait(lk, [&](){ return completed; });
}
LOG(debug) << "OFI transport (" << fId << "): data band connection accepted.";
}
auto Socket::ConnectControlSocket(Context::Address address) -> void
{
auto addr = tools::ToString("tcp://", address.Ip, ":", address.Port);
if (zmq_connect(fControlSocket, addr.c_str()) != 0)
throw SocketError(tools::ToString("Failed connecting control socket ", fId, ", reason: ", zmq_strerror(errno)));
}
auto Socket::ConnectDataEndpoint() -> void
{
assert(!fDataEndpoint);
fDataEndpoint = fContext.MakeOfiConnectedEndpoint(fRemoteDataAddr);
fDataEndpoint->enable();
LOG(debug) << "OFI transport (" << fId << "): local data band address: " << Context::ConvertAddress(fDataEndpoint->get_local_address());
fDataEndpoint->connect([&]() {
LOG(debug) << "OFI transport (" << fId << "): data band connected.";
});
}
auto Socket::ProcessControlMessage(CtrlMsgPtr<DataAddressAnnouncement> daa) -> void
{
assert(daa->type == ControlMessageType::DataAddressAnnouncement);
sockaddr_in remoteAddr;
remoteAddr.sin_family = AF_INET;
remoteAddr.sin_port = daa->port;
remoteAddr.sin_addr.s_addr = daa->ipv4;
auto addr = Context::ConvertAddress(remoteAddr);
LOG(debug) << "OFI transport (" << fId << "): Data address announcement of remote endpoint received: " << addr;
fRemoteDataAddr = addr;
}
auto Socket::AnnounceDataAddress() -> void
try {
// fLocalDataAddr = fDataEndpoint->get_local_address();
// LOG(debug) << "Address of local ofi endpoint in socket " << fId << ": " << Context::ConvertAddress(fLocalDataAddr);
// Create new data address announcement message
auto daa = MakeControlMessage<DataAddressAnnouncement>(&fCtrlMemPool);
auto addr = Context::ConvertAddress(fLocalDataAddr);
daa->ipv4 = addr.sin_addr.s_addr;
daa->port = addr.sin_port;
SendControlMessage(StaticUniquePtrUpcast<ControlMessage>(std::move(daa)));
LOG(debug) << "OFI transport (" << fId << "): data address announced.";
} catch (const SocketError& e) {
throw SocketError(tools::ToString("Failed to announce data address, reason: ", e.what()));
}
auto Socket::SendControlMessage(CtrlMsgPtr<ControlMessage> ctrl) -> void
{
assert(fControlSocket);
// LOG(debug) << "About to send control message: " << ctrl->DebugString();
// Serialize
struct ZmqMsg
{
zmq_msg_t msg;
~ZmqMsg() { zmq_msg_close(&msg); }
operator zmq_msg_t*() { return &msg; }
} msg;
switch (ctrl->type) {
case ControlMessageType::DataAddressAnnouncement:
{
auto ret = zmq_msg_init_size(msg, sizeof(DataAddressAnnouncement));
(void)ret;
assert(ret == 0);
std::memcpy(zmq_msg_data(msg), ctrl.get(), sizeof(DataAddressAnnouncement));
}
break;
case ControlMessageType::PostBuffer:
{
auto ret = zmq_msg_init_size(msg, sizeof(PostBuffer));
(void)ret;
assert(ret == 0);
std::memcpy(zmq_msg_data(msg), ctrl.get(), sizeof(PostBuffer));
}
break;
default:
throw SocketError(tools::ToString("Cannot send control message of unknown type."));
}
// Send
if (zmq_msg_send(msg, fControlSocket, 0) == -1) {
throw SocketError(
tools::ToString("Failed to send control message, reason: ", zmq_strerror(errno)));
}
}
auto Socket::ReceiveControlMessage() -> CtrlMsgPtr<ControlMessage>
{
assert(fControlSocket);
// Receive
struct ZmqMsg
{
zmq_msg_t msg;
~ZmqMsg() { zmq_msg_close(&msg); }
operator zmq_msg_t*() { return &msg; }
} msg;
auto ret = zmq_msg_init(msg);
(void)ret;
assert(ret == 0);
if (zmq_msg_recv(msg, fControlSocket, 0) == -1) {
throw SocketError(
tools::ToString("Failed to receive control message, reason: ", zmq_strerror(errno)));
}
// Deserialize and sanity check
const void* msg_data = zmq_msg_data(msg);
const size_t msg_size = zmq_msg_size(msg);
(void)msg_size;
assert(msg_size >= sizeof(ControlMessage));
switch (static_cast<const ControlMessage*>(msg_data)->type) {
case ControlMessageType::DataAddressAnnouncement: {
assert(msg_size == sizeof(DataAddressAnnouncement));
auto daa = MakeControlMessage<DataAddressAnnouncement>(&fCtrlMemPool);
std::memcpy(daa.get(), msg_data, sizeof(DataAddressAnnouncement));
// LOG(debug) << "Received control message: " << ctrl->DebugString();
return StaticUniquePtrUpcast<ControlMessage>(std::move(daa));
}
case ControlMessageType::PostBuffer: {
assert(msg_size == sizeof(PostBuffer));
auto pb = MakeControlMessage<PostBuffer>(&fCtrlMemPool);
std::memcpy(pb.get(), msg_data, sizeof(PostBuffer));
// LOG(debug) << "Received control message: " << ctrl->DebugString();
return StaticUniquePtrUpcast<ControlMessage>(std::move(pb));
}
default:
throw SocketError(tools::ToString("Received control message of unknown type."));
}
}
auto Socket::Send(MessagePtr& msg, const int timeout) -> int { return SendImpl(msg, 0, timeout); }
auto Socket::Receive(MessagePtr& msg, const int timeout) -> int { return ReceiveImpl(msg, 0, timeout); }
auto Socket::Send(std::vector<MessagePtr>& msgVec, const int timeout) -> int64_t { return SendImpl(msgVec, 0, timeout); }
auto Socket::Receive(std::vector<MessagePtr>& msgVec, const int timeout) -> int64_t { return ReceiveImpl(msgVec, 0, timeout); }
auto Socket::SendImpl(FairMQMessagePtr& msg, const int /*flags*/, const int /*timeout*/) -> int
try {
auto size = msg->GetSize();
// LOG(debug) << "OFI transport (" << fId << "): ENTER SendImpl";
// Create and send control message
auto pb = MakeControlMessage<PostBuffer>(&fCtrlMemPool);
pb->size = size;
SendControlMessage(StaticUniquePtrUpcast<ControlMessage>(std::move(pb)));
// LOG(debug) << "OFI transport (" << fId << "): >>>>> SendImpl: Control message sent, size=" << size;
// LOG(debug) << "OFI transport (" << fId << "): >>>>> SendImpl: msg->GetData()=" << msg->GetData() << ",msg->GetSize()=" << msg->GetSize();
if (size) {
// Receive ack
auto ack = StaticUniquePtrDowncast<PostBuffer>(ReceiveControlMessage());
assert(ack.get());
auto size_ack = ack->size;
assert(size == size_ack);
// LOG(debug) << "OFI transport (" << fId << "): >>>>> SendImpl: Control ack received, size_ack=" << size_ack;
boost::asio::mutable_buffer buffer(msg->GetData(), size);
asiofi::memory_region mr(fContext.GetDomain(), buffer, asiofi::mr::access::send);
std::mutex m;
std::condition_variable cv;
bool completed(false);
fDataEndpoint->send(
buffer,
mr.desc(),
[&](boost::asio::mutable_buffer) {
{
std::unique_lock<std::mutex> lk(m);
completed = true;
}
cv.notify_one();
// LOG(debug) << "OFI transport (" << fId << "): > SendImpl: Data buffer sent";
}
);
{
std::unique_lock<std::mutex> lk(m);
cv.wait(lk, [&](){ return completed; });
}
// LOG(debug) << "OFI transport (" << fId << "): >>>>> SendImpl: Data send buffer posted";
}
msg.reset(nullptr);
fBytesTx += size;
fMessagesTx++;
// LOG(debug) << "OFI transport (" << fId << "): LEAVE SendImpl";
return size;
}
catch (const SilentSocketError& e)
{
return -2;
}
catch (const std::exception& e)
{
LOG(error) << e.what();
return -1;
}
auto Socket::ReceiveImpl(FairMQMessagePtr& msg, const int /*flags*/, const int /*timeout*/) -> int
try {
// LOG(debug) << "OFI transport (" << fId << "): ENTER ReceiveImpl";
// Receive and process control message
auto pb = StaticUniquePtrDowncast<PostBuffer>(ReceiveControlMessage());
assert(pb.get());
auto size = pb->size;
// LOG(debug) << "OFI transport (" << fId << "): <<<<< ReceiveImpl: Control message received, size=" << size;
// Receive data
if (size) {
msg->Rebuild(size);
boost::asio::mutable_buffer buffer(msg->GetData(), size);
asiofi::memory_region mr(fContext.GetDomain(), buffer, asiofi::mr::access::recv);
std::mutex m;
std::condition_variable cv;
bool completed(false);
fDataEndpoint->recv(buffer, mr.desc(), [&](boost::asio::mutable_buffer) {
{
std::unique_lock<std::mutex> lk(m);
completed = true;
}
cv.notify_one();
}
);
// LOG(debug) << "OFI transport (" << fId << "): <<<<< ReceiveImpl: Data buffer posted";
auto ack = MakeControlMessage<PostBuffer>(&fCtrlMemPool);
ack->size = size;
SendControlMessage(StaticUniquePtrUpcast<ControlMessage>(std::move(ack)));
// LOG(debug) << "OFI transport (" << fId << "): <<<<< ReceiveImpl: Control Ack sent";
{
std::unique_lock<std::mutex> lk(m);
cv.wait(lk, [&](){ return completed; });
}
// LOG(debug) << "OFI transport (" << fId << "): <<<<< ReceiveImpl: Data received";
}
fBytesRx += size;
fMessagesRx++;
// LOG(debug) << "OFI transport (" << fId << "): EXIT ReceiveImpl";
return size;
}
catch (const SilentSocketError& e)
{
return -2;
}
catch (const std::exception& e)
{
LOG(error) << e.what();
return -1;
}
auto Socket::SendImpl(vector<FairMQMessagePtr>& /*msgVec*/, const int /*flags*/, const int /*timeout*/) -> int64_t
{
throw SocketError{"Not yet implemented."};
// const unsigned int vecSize = msgVec.size();
// int elapsed = 0;
//
// // Sending vector typicaly handles more then one part
// if (vecSize > 1)
// {
// int64_t totalSize = 0;
// int nbytes = -1;
// bool repeat = false;
//
// while (true && !fInterrupted)
// {
// for (unsigned int i = 0; i < vecSize; ++i)
// {
// nbytes = zmq_msg_send(static_cast<FairMQMessageSHM*>(msgVec[i].get())->GetMessage(),
// fSocket,
// (i < vecSize - 1) ? ZMQ_SNDMORE|flags : flags);
// if (nbytes >= 0)
// {
// static_cast<FairMQMessageSHM*>(msgVec[i].get())->fQueued = true;
// size_t size = msgVec[i]->GetSize();
//
// totalSize += size;
// }
// else
// {
// // according to ZMQ docs, this can only occur for the first part
// if (zmq_errno() == EAGAIN)
// {
// if (!fInterrupted && ((flags & ZMQ_DONTWAIT) == 0))
// {
// if (timeout)
// {
// elapsed += fSndTimeout;
// if (elapsed >= timeout)
// {
// return -2;
// }
// }
// repeat = true;
// break;
// }
// else
// {
// return -2;
// }
// }
// if (zmq_errno() == ETERM)
// {
// LOG(info) << "terminating socket " << fId;
// return -1;
// }
// LOG(error) << "Failed sending on socket " << fId << ", reason: " << zmq_strerror(errno);
// return nbytes;
// }
// }
//
// if (repeat)
// {
// continue;
// }
//
// // store statistics on how many messages have been sent (handle all parts as a single message)
// ++fMessagesTx;
// fBytesTx += totalSize;
// return totalSize;
// }
//
// return -1;
// } // If there's only one part, send it as a regular message
// else if (vecSize == 1)
// {
// return Send(msgVec.back(), flags);
// }
// else // if the vector is empty, something might be wrong
// {
// LOG(warn) << "Will not send empty vector";
// return -1;
// }
}
auto Socket::ReceiveImpl(vector<FairMQMessagePtr>& /*msgVec*/, const int /*flags*/, const int /*timeout*/) -> int64_t
{
throw SocketError{"Not yet implemented."};
// int64_t totalSize = 0;
// int64_t more = 0;
// bool repeat = false;
// int elapsed = 0;
//
// while (true)
// {
// // Warn if the vector is filled before Receive() and empty it.
// // if (msgVec.size() > 0)
// // {
// // LOG(warn) << "Message vector contains elements before Receive(), they will be deleted!";
// // msgVec.clear();
// // }
//
// totalSize = 0;
// more = 0;
// repeat = false;
//
// do
// {
// FairMQMessagePtr part(new FairMQMessageSHM(fManager, GetTransport()));
// zmq_msg_t* msgPtr = static_cast<FairMQMessageSHM*>(part.get())->GetMessage();
//
// int nbytes = zmq_msg_recv(msgPtr, fSocket, flags);
// if (nbytes == 0)
// {
// msgVec.push_back(move(part));
// }
// else if (nbytes > 0)
// {
// MetaHeader* hdr = static_cast<MetaHeader*>(zmq_msg_data(msgPtr));
// size_t size = 0;
// static_cast<FairMQMessageSHM*>(part.get())->fHandle = hdr->fHandle;
// static_cast<FairMQMessageSHM*>(part.get())->fSize = hdr->fSize;
// static_cast<FairMQMessageSHM*>(part.get())->fRegionId = hdr->fRegionId;
// static_cast<FairMQMessageSHM*>(part.get())->fHint = hdr->fHint;
// size = part->GetSize();
//
// msgVec.push_back(move(part));
//
// totalSize += size;
// }
// else if (zmq_errno() == EAGAIN)
// {
// if (!fInterrupted && ((flags & ZMQ_DONTWAIT) == 0))
// {
// if (timeout)
// {
// elapsed += fSndTimeout;
// if (elapsed >= timeout)
// {
// return -2;
// }
// }
// repeat = true;
// break;
// }
// else
// {
// return -2;
// }
// }
// else
// {
// return nbytes;
// }
//
// size_t more_size = sizeof(more);
// zmq_getsockopt(fSocket, ZMQ_RCVMORE, &more, &more_size);
// }
// while (more);
//
// if (repeat)
// {
// continue;
// }
//
// // store statistics on how many messages have been received (handle all parts as a single message)
// ++fMessagesRx;
// fBytesRx += totalSize;
// return totalSize;
// }
}
auto Socket::Close() -> void
{
if (zmq_close(fControlSocket) != 0)
throw SocketError(tools::ToString("Failed closing zmq meta socket, reason: ", zmq_strerror(errno)));
// if (zmq_close(fMonitorSocket) != 0)
// throw SocketError(tools::ToString("Failed closing zmq monitor socket, reason: ", zmq_strerror(errno)));
}
auto Socket::SetOption(const string& option, const void* value, size_t valueSize) -> void
{
if (zmq_setsockopt(fControlSocket, GetConstant(option), value, valueSize) < 0) {
throw SocketError{tools::ToString("Failed setting socket option, reason: ", zmq_strerror(errno))};
}
}
auto Socket::GetOption(const string& option, void* value, size_t* valueSize) -> void
{
if (zmq_getsockopt(fControlSocket, GetConstant(option), value, valueSize) < 0) {
throw SocketError{tools::ToString("Failed getting socket option, reason: ", zmq_strerror(errno))};
}
}
int Socket::GetLinger() const
{
int value = 0;
size_t valueSize;
if (zmq_getsockopt(fControlSocket, ZMQ_LINGER, &value, &valueSize) < 0) {
throw SocketError(tools::ToString("failed getting ZMQ_LINGER, reason: ", zmq_strerror(errno)));
}
return value;
}
void Socket::SetLinger(const int value)
{
if (zmq_setsockopt(fControlSocket, ZMQ_LINGER, &value, sizeof(value)) < 0) {
throw SocketError(tools::ToString("failed setting ZMQ_LINGER, reason: ", zmq_strerror(errno)));
}
}
void Socket::SetSndBufSize(const int value)
{
if (zmq_setsockopt(fControlSocket, ZMQ_SNDHWM, &value, sizeof(value)) < 0) {
throw SocketError(tools::ToString("failed setting ZMQ_SNDHWM, reason: ", zmq_strerror(errno)));
}
}
int Socket::GetSndBufSize() const
{
int value = 0;
size_t valueSize;
if (zmq_getsockopt(fControlSocket, ZMQ_SNDHWM, &value, &valueSize) < 0) {
throw SocketError(tools::ToString("failed getting ZMQ_SNDHWM, reason: ", zmq_strerror(errno)));
}
return value;
}
void Socket::SetRcvBufSize(const int value)
{
if (zmq_setsockopt(fControlSocket, ZMQ_RCVHWM, &value, sizeof(value)) < 0) {
throw SocketError(tools::ToString("failed setting ZMQ_RCVHWM, reason: ", zmq_strerror(errno)));
}
}
int Socket::GetRcvBufSize() const
{
int value = 0;
size_t valueSize;
if (zmq_getsockopt(fControlSocket, ZMQ_RCVHWM, &value, &valueSize) < 0) {
throw SocketError(tools::ToString("failed getting ZMQ_RCVHWM, reason: ", zmq_strerror(errno)));
}
return value;
}
void Socket::SetSndKernelSize(const int value)
{
if (zmq_setsockopt(fControlSocket, ZMQ_SNDBUF, &value, sizeof(value)) < 0) {
throw SocketError(tools::ToString("failed getting ZMQ_SNDBUF, reason: ", zmq_strerror(errno)));
}
}
int Socket::GetSndKernelSize() const
{
int value = 0;
size_t valueSize;
if (zmq_getsockopt(fControlSocket, ZMQ_SNDBUF, &value, &valueSize) < 0) {
throw SocketError(tools::ToString("failed getting ZMQ_SNDBUF, reason: ", zmq_strerror(errno)));
}
return value;
}
void Socket::SetRcvKernelSize(const int value)
{
if (zmq_setsockopt(fControlSocket, ZMQ_RCVBUF, &value, sizeof(value)) < 0) {
throw SocketError(tools::ToString("failed getting ZMQ_RCVBUF, reason: ", zmq_strerror(errno)));
}
}
int Socket::GetRcvKernelSize() const
{
int value = 0;
size_t valueSize;
if (zmq_getsockopt(fControlSocket, ZMQ_RCVBUF, &value, &valueSize) < 0) {
throw SocketError(tools::ToString("failed getting ZMQ_RCVBUF, reason: ", zmq_strerror(errno)));
}
return value;
}
auto Socket::GetConstant(const string& constant) -> int
{
if (constant == "")
return 0;
if (constant == "sub")
return ZMQ_SUB;
if (constant == "pub")
return ZMQ_PUB;
if (constant == "xsub")
return ZMQ_XSUB;
if (constant == "xpub")
return ZMQ_XPUB;
if (constant == "push")
return ZMQ_PUSH;
if (constant == "pull")
return ZMQ_PULL;
if (constant == "req")
return ZMQ_REQ;
if (constant == "rep")
return ZMQ_REP;
if (constant == "dealer")
return ZMQ_DEALER;
if (constant == "router")
return ZMQ_ROUTER;
if (constant == "pair")
return ZMQ_PAIR;
if (constant == "snd-hwm")
return ZMQ_SNDHWM;
if (constant == "rcv-hwm")
return ZMQ_RCVHWM;
if (constant == "snd-size")
return ZMQ_SNDBUF;
if (constant == "rcv-size")
return ZMQ_RCVBUF;
if (constant == "snd-more")
return ZMQ_SNDMORE;
if (constant == "rcv-more")
return ZMQ_RCVMORE;
if (constant == "linger")
return ZMQ_LINGER;
if (constant == "no-block")
return ZMQ_DONTWAIT;
if (constant == "snd-more no-block")
return ZMQ_DONTWAIT|ZMQ_SNDMORE;
return -1;
}
Socket::~Socket()
{
try {
Close(); // NOLINT(clang-analyzer-optin.cplusplus.VirtualCall)
} catch (SocketError& e) {
LOG(error) << e.what();
}
}
} /* namespace ofi */
} /* namespace mq */
} /* namespace fair */